Точки разрыва функции первого и второго рода. Точка разрыва первого рода


Точки разрыва функции первого и второго рода

Функция f(x) называется непрерывной в точке х = а если:1) она определена в этой точке; 2) существует предел функции в этой точке3) значение предела равно значению функции в точке х = а, т.е.

Если одно из условий нарушается то функция называется разрывной в точке х = а, а сама точка х = а называется точкой разрыва. Все элементарные функции являются непрерывными на интервалах определенности.

Классификация точек разрыва

Точка х0 называется точкой разрыва первого рода функции у = f(x) если существуют конечные односторонние пределы справаи слева.

Если, кроме этого, выполняется хотя бы одно из условийто функция в точке х = а имеет неустранимый разрыв первого рода.

Если пределы равны, однако функция не существуетто имеем устранимый разрыв первого рода.

Точка х0 называется точкой разрыва второго рода функции у= f(x) если граница справа или слева не существует или бесконечна.

Скачком функции в точке разрыва х = х0 называется разность ее односторонних границесли они разные и не равны бесконечности.

При нахождении точек разрыва функции можно руководствоваться следующими правилами:

1) элементарная функция может иметь разрыв только в отдельных точках, но не может быть разрывной на определенном интервале.2) элементарная функция может иметь разрыв в точке где она не определена при условии, что она будет определена хотя бы с одной стороны от этой точки.3) Неэлементарные функция может иметь разрывы как в точках где она определена, так и в тех где она определена.Например, если функция задана несколькими различными аналитическими выражениями (формулами) для различных интервалов, то на границе стыка может быть разрывной.

Рассмотрим несколько задач по данной теме.

Задача 1.Найти точки разрыва функцииа)

Решение: Функция определена во всех точках кроме тех где знаменатель обращается в нуль x = 1, x = 1. Область определения функции следующая

Найдем односторонние пределы в точках разрыва

При нахождении односторонних границ подобного вида достаточно убедиться в знаке функции и в том, что знаменатель стремится к нулю. В результате получим границу равную бесконечности или минус бесконечности.

Поскольку в точках x = 1, x = -1 функция имеет бесконечные односторонние пределы, то аргументы являются точками разрыва второго рода. График функции приведен на рисунке ниже

-------------------------------------------------------

б)

Решение:Задача достаточно простая. В первую очередь находим нули знаменателя

Таким образом функция определена на всей действительной оси за исключением точек , которые являются точками разрыва. Вычислим односторонние пределы справа и слева

Пределы бесконечны поэтому, по определению, имеем точки разрыва второго рода.

Из графиков приведенных функций видим что для ряда из них отыскания точек разрыва сводится до нахождения вертикальных асимптот. Но бывают функции которые и без вертикальных асимптот имеют разрывы первого или второго рода.

-------------------------------------------------------

в)

Решение: Заданная функция непрерывна на всей числовой оси кроме точки x = -3. Вычислим односторонние границы в этой точке

Они различаются по значениям, однако есть конечными. Итак точка x = -3 является неустранимой точкой разрыва І рода.

-------------------------------------------------------

Задача 2.Найти точки разрыва функции если они существуют. Вычислить скачок функции в точке разрыва. Построить график функции.

а)

Решение: Для заданной функции точка x = 2 является точкой разрыва. Найдем предел функции , чтобы определить характер разрыва

По определению, точка x = 2 является неустранимой точкой разрыва первого рода. Вычислим скачок функции при x=2

График функции на интервале который нас интересует приведен далее

-------------------------------------------------------

б)

Решение: Неэлементарная функция y (x) определена для всех положительных значений аргумента. Точки которые разбивают функцию на интервалы могут быть разрывами. Для проверки найдем соответствующие пределы

Поскольку предел функции в точке x = 2 равен значению функции в этой точке то функция - непрерывная.

Отсюда также следует, что для непрерывной функции скачок равен 6-6 = 0.

Исследуем на непрерывность вторую точку

По определению функция в точке x = 2 имеет неустранимый разрыв І рода.

Прыжок функции равен 29 - (- 3) = 31.

По условию задания построим график функции.

Из приведенного материала Вы должны научиться находить разрывы первого и второго рода, а также различать их. Для этого подобрано немного примеров, которые в полной мере раскрывают все важные вопросы темы. Все остальное сводится к нахождению простых односторонних пределов и не должно быть для Вас сложным.

yukhym.com

Точка разрыва первого рода

Определение

Если в точке существуют конечные пределыи, такие, что, то точканазываетсяточкой разрыва первого рода.

Точка разрыва второго рода

Определение

Если хотя б один из пределов илине существует или равен бесконечности, то точканазываетсяточкой разрыва второго рода.

  1. Свойства функций непрерывных на отрезке (теоремы Вейерштрасса и Больцано-Коши).

Свойства функций непрерывных на отрезке:

  1. Теорема Вейерштрасса. Если функция непрерывна на отрезке, то она достигает на этом отрезке свои наибольшее и наименьшее значения.

  2. Непрерывная на отрезке функция является ограниченной на этом отрезке.

  3. Теорема Больцано-Коши. Если функция является непрерывной на отрезкеи принимает на концах этого отрезка неравные между собой значения, то есть,, то на этом отрезке функция принимает и все промежуточные значения междуи.

  4. Если функция , которая непрерывна на некотором отрезке, принимает на концах отрезка значения разных знаков, то существует такая точкатакая, что.

Вторая теорема Вейерштрасса

  Непрерывная на отрезке [a, b] функция ограничена и достигает на этом отрезке своих наибольшего и наименьшего значения (своей верхней и своей нижней грани).

Теорема о промежуточных значениях (Больцано-Коши)

Пусть функция f непрерывна на отрезке [ a,b ], причем f(a) не равно f(b).

Тогда для любого числа C, заключенного между f(a) и f(b) найдется точка γ∈(a,b), что f(γ) = C.

Следствие 1.

Если функция непрерывна на отрезке и на его концах принимает значения разных знаков, то на этом отрезке есть хотя бы одна точка, в которой функция обращается в нуль.

  1. Производная функции одной переменной. Основные определения. Геометрический и механический смысл.

Произво́дная (функции в точке) — основное понятие дифференциального исчисления, характеризующее скорость изменения функции (в данной точке).

Определение производной функции через предел

Пусть в некоторой окрестности точки определена функция

Производной функции в точкеназывается предел, если он существует,

Геометрический и физический смысл производной

Тангенс.

Если функция имеет конечную производную в точкето в окрестностиеё можно приблизить линейной функцией

Функция называется касательной кв точкеЧислоявляется угловым коэффициентом или тангенсом угла наклона касательной прямой.

Скорость изменения функции

Пусть — закон прямолинейного движения. Тогдавыражает мгновенную скорость движения в момент времениВторая производнаявыражает мгновенное ускорение в момент времениВообще производная функциив точкевыражает скорость изменения функции в точке, то есть скорость протекания процесса, описанного зависимостью

  1. Дифференциал функции одной переменной. Геометрический смысл. Необходимое и достаточное условие существования дифференциала. Инвариантность формы дифференциала.

Дифференциалом функции у=ƒ(х) в точке х называется главная часть ее приращения, равная произведению производной функции на приращение аргумента, и обозначается dу (или dƒ(х)):

dy=ƒ'(х)•∆х.                                             (24.1)

Дифференциал dу называют также дифференциалом первого порядка. Найдем дифференциал независимой переменной х, т. е. дифференциал функции у=х.

Так как у'=х'=1, то, согласно формуле (24.1), имеем dy=dx=∆x, т. е. дифференциал независимой переменной равен приращению этой переменной: dх=∆х.

Поэтому формулу (24.1) можно записать так:

dy=ƒ'(х)dх,    

Геометрический смысл дифференциала:

Проведем к графику функции в точкукасательнуюи рассмотрим

ординату этой касательной для точки . На рисунке,. Из прямоугольного треугольникаимеем:, т.е.. Но, согласно геометрическому смыслу производной,. Поэтомуили. Это означает, что дифференциал функциивравен приращению ординаты касательной к графику функции в этой точке, когдаполучает приращение.

Необходимое и достаточное условие существования дифференциала

Для того, чтобы функция f(x) была дифференцируема в точке x0 необходимо и достаточно, чтобы у нее существовала производная в этой точке.

При этом

 

Δy = f(x0+Δx)-f(x0) = f '(x0)Δx+α(Δx)Δx,

 

где α(Δx) - бесконечно малая функция, при Δx→0.

studfiles.net

Точки разрыва функции (определения, классификация, примеры)

Определения и классификация точек разрыва функции

Определение точки разрыва функции в точкеКонечная точка x0 называется точкой разрыва функции f(x), если функция определена на некоторой проколотой окрестности точки x0, но не является непрерывной в этой точке.

То есть, в точке разрыва, функция либо не определена, либо определена, но хотя бы один односторонний предел в этой точке или не существует, или не равен значению f(x0) функции в точке x0. См. «Определение непрерывности функции в точке».

Определение точки разрыва 1-го родаТочка называется точкой разрыва первого рода, если является точкой разрыва и существуют конечные односторонние пределы слева и справа :.

Определение скачка функцииСкачком Δ функции в точке называется разность пределов справа и слева.

Определение точки устранимого разрываТочка называется точкой устранимого разрыва, если существует предел,но функция в точке или не определена, или не равна предельному значению: .

Таким образом, точка устранимого разрыва – это точка разрыва первого рода, в которой скачек функции равен нулю.

Определение точки разрыва 2-го родаТочка разрыва называется точкой разрыва второго рода, если она не является точкой разрыва 1-го рода. То есть если не существует, хотя бы одного одностороннего предела, или хотя бы один односторонний предел в точке равен бесконечности.

Исследование функций на непрерывность

При исследовании функций на непрерывность мы используем следующие факты.

  • Элементарные функции и обратные к ним непрерывны на своей области определения. К ним относятся следующие функции:, а также постоянная и обратные к ним функции. См. «Справочник по элементарным функциям».
  • Сумма, разность и произведение непрерывных, на некотором множестве функций, является непрерывной, функцией на этом множестве.Частное двух непрерывных, на некотором множестве функций, является непрерывной, функцией на этом множестве, за исключением точек, в которых знаменатель дроби обращается в нуль. См. «Арифметические свойства непрерывных функций»
  • Сложная функция непрерывна в точке , если функция непрерывна в точке , а функция непрерывна в точке . См. «Предел и непрерывность сложной функции»

Примеры

Пример 1

Задана функция и два значения аргумента и . Требуется: 1) установить, является ли данная функция непрерывной или разрывной для каждого из данных значений аргумента; 2) в случае разрыва функции найти ее пределы в точке разрыва слева и справа, установить вид разрыва; 3) сделать схематический чертеж..

Решение

Заданная функция является сложной. Ее можно рассматривать как композицию двух функций:,   . Тогда.

Рассмотрим функцию . Она составлена из функции и постоянных с помощью арифметических операций сложения и деления. Функция является элементарной – степенной функцией с показателем степени 1. Она определена и непрерывна для всех значений переменной . Поэтому функция определена и непрерывна для всех , кроме точек, в которых знаменатель дроби обращается в нуль. Приравниваем знаменатель к нулю и решаем уравнение:.Получаем единственный корень .Итак, функция определена и непрерывна для всех , кроме точки .

Рассмотрим функцию . Это показательная функция с положительным основанием степени. Она определена и непрерывна для всех значений переменной .Поэтому заданная функция определена и непрерывна для всех значений переменной , кроме точки .

Таким образом, в точке , заданная функция является непрерывной.

График функции y = 41/(x+2).

Рассмотрим точку . В этой точке функция не определена. Поэтому она не является непрерывной. Установим род разрыва. Для этого находим односторонние пределы.

Используя связь между бесконечно большими и бесконечно малыми функциями, для предела слева имеем:при ,,,.

Здесь мы использовали следующие общепринятые обозначения:.Также мы использовали свойство показательной функции с основанием :.

Аналогично, для предела справа имеем:при ,,,.

Поскольку один из односторонних пределов равен бесконечности, то в точке разрыв второго рода.

Ответ

В точке   функция непрерывна.В точке   разрыв второго рода,.

Пример 2

Задана функция . Найти точки разрыва функции, если они существуют. Указать род разрыва и скачек функции, если есть. Сделать чертеж..

Решение

График заданной функции.

Функция является степенной функцией с целым показателем степени, равным 1. Такую функцию также называют линейной. Она определена и непрерывна для всех значений переменной .

В   входят еще две функции: и . Они составлены из функции и постоянных с помощью арифметических операций сложения и умножения:,  .Поэтому они также непрерывны для всех .

Поскольку функции, входящие в состав непрерывны для всех , то может иметь точки разрыва только в точках склейки ее составляющих. Это точки и . Исследуем на непрерывность в этих точках. Для этого найдем односторонние пределы.

Рассмотрим точку . Чтобы найти левый предел функции в этой точке, мы должны использовать значения этой функции в любой левой проколотой окрестности точки . Возьмем окрестность . На ней . Тогда предел слева:.Здесь мы использовали тот факт, что функция является непрерывной в точке (как и в любой другой точке). Поэтому ее левый (как и правый) предел равен значению функции в этой точке.

Найдем правый предел в точке . Для этого мы должны использовать значения функции в любой правой проколотой окрестности этой точки. Возьмем окрестность . На ней . Тогда предел справа:.Здесь мы также воспользовались непрерывностью функции .

Поскольку, в точке , предел слева не равен пределу справа, то в ней функция не является непрерывной – это точка разрыва. Поскольку односторонние пределы конечны, то это точка разрыва первого рода. Скачек функции:.

Теперь рассмотрим точку . Тем же способом вычисляем односторонние пределы:;.Поскольку функция определена в точке и левый предел равен правому, то функция непрерывна в этой точке.

Ответ

Функция имеет разрыв первого рода в точке . Скачек функции в ней: . В остальных точках функция непрерывна.

Пример 3

Определить точки разрыва функции и исследовать характер этих точек, если.

Решение

Воспользуемся тем, что линейная функция определена и непрерывна для всех . Заданная функция составлена из линейной функции и постоянных с помощью арифметических операций сложения, вычитания, умножения и деления:.Поэтому она определена и непрерывна для всех , за исключением точек, в которых знаменатель дроби обращается в нуль.

Найдем эти точки. Приравниваем знаменатель к нулю и решаем квадратное уравнение:;;;   .Тогда.

Используем формулу:.С ее помощью, разложим числитель на множители:.

Тогда заданная функция примет вид:(П1)   .Она определена и непрерывна для всех , кроме точек и . Поэтому точки и являются точками разрыва функции.

Разделим числитель и знаменатель дроби в (П1) на :(П2)   .Такую операцию мы можем проделать, если . Таким образом,  при  .То есть функции и отличаются только в одной точке: определена при , а в этой точке не определена.

Чтобы определить род точек разрыва, нам нужно найти односторонние пределы функции в точках и . Для их вычисления мы воспользуемся тем, что если значения функции изменить, или сделать неопределенными в конечном числе точек, то это не окажет ни какого влияние на величину или существование предела в произвольной точке (см. «Влияние значений функции в конечном числе точек на величину предела»). То есть пределы функции в любых точках равны пределам функции .

Рассмотрим точку . Знаменатель дроби в функции , при в нуль не обращается. Поэтому она определена и непрерывна при . Отсюда следует, что существует предел при и он равен значению функции в этой точке:.Поэтому точка является точкой устранимого разрыва первого рода.

Рассмотрим точку . Используя связь бесконечно малых и бесконечно больших функций, имеем:;.Поскольку пределы бесконечные, то в этой точке разрыв второго рода.

Ответ

Функция имеет точку устранимого разрыва первого рода при , и точку разрыва второго рода при .

Использованная литература:О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.

Автор: Олег Одинцов.     Опубликовано: 22-09-2018

1cov-edu.ru

Точки разрыва функции и их виды

Определение точек разрыва функции и их видов является продолжением темы непрерывности функции. Наглядное (графическое) объяснение смысла точек разрыва функции даётся так же в контрасте с понятием непрерывности.

Точки на графике, которые не соединены между собой, называются точками разрыва функции. График такой функции, терпящей разрыв в точке x=2 - - на рисунке ниже.

Обобщением вышесказанного является следующее определение. Если функция не является непрерывной в точке , то она имеет в этой точке разрыв а сама точка называется точкой разрыва. Разрывы бывают первого рода и второго рода.

Для того, чтобы определять виды (характер) точек разрыва функции нужно уверенно находить пределы, поэтому нелишне открыть в новом окне соответствующий урок.

Точка разрыва первого рода: у функции существуют как конечный (т. е. не равный бесконечности) левый предел, так и конечный правый предел, но функция не определена в точке или левый и правый пределы различны (не равны).

Точка устранимого разрыва первого рода. Левый и правый пределы равны. При этом существует возможность доопределить функцию в точке. Доопределить функцию в точке, говоря просто, значит обеспечить соединение точек, между которыми находится точка, в которой найдены равные друг другу левый и правый пределы. При этом соединение должно представлять собой лишь одну точку, в которой должно быть найдено значение функции.

Пример 1. Определить точку разрыва функции и вид (характер) точки разрыва.

Решение. Функция не определена в точке . Находим левый и правый пределы функции в этой точке:

,

.

Левый и правый пределы равны, следовательно точка - точка устранимого разрыва первого рода.

Есть возможность доопределить функцию:

График функции с точкой разрыва - под примером.

Точка неустранимого (конечного) разрыва первого рода. Существуют левый и правый пределы, но они различны (не равны). Функцию невозможно доопределить. Разность пределов называется скачком.

Пример 2. Определить точку разрыва функции и вид (характер) точки разрыва для функции

Решение. Очевидно, что в точке меняется выражение функции. Найдём левый и правый пределы функции в этой точке:

,

.

Левый и правый пределы не равны равны, следовательно точка - точка неустранимого (конечного) разрыва первого рода. График функции с точкой разрыва - под примером.

Нахождение точек разрыва функции может быть как самостоятельной задачей, так и частью Полного исследования функции и построения графика.

Точка разрыва второго рода: точка, в которой хотя бы один из пределов (левый или правый) - бесконечный (равен бесконечности).

Пример 3. Определить точку разрыва функции и вид (характер) точки разрыва для функции

Решение. Из выражения степени при e видно, что в точке функция не определена. Найдём левый и правый пределы функции в этой точке:

,

.

Один из пределов равен бесконечности, поэтому точка - точка разрыва второго рода. График функции с точкой разрыва - под примером.

Нахождение точек разрыва функции может быть как самостоятельной задачей, так и частью Полного исследования функции и построения графика.

И ещё пара примеров, решаемых вместе, а далее - для самостоятельного решения.

Пример 4. Определить точку разрыва функции и вид (характер) точки разрыва для функции

Решение. Из выражения степени при 2 видно, что в точке функция не определена. Найдём левый и правый пределы функции в этой точке:

.

Пределы не равны и конечны, поэтому точка - точка неустранимого разрыва первого рода. График функции с точкой разрыва - под примером.

Пример 5. Определить точку разрыва функции и вид (характер) точки разрыва для функции

Решение. Очевидно, что в точке функция не определена. Найдём левый и правый пределы функции в этой точке:

,

.

Оба предела бесконечны, поэтому точка - точка разрыва второго рода. График функции с точкой разрыва - под примером.

Весь раздел "Исследование функций"

function-x.ru

Точки разрыва функции, с примерами

ОПРЕДЕЛЕНИЕ Если в точке функция не является непрерывной, то эта точка называется точкой разрыва функции.

Классификация точек разрыва функции

Точка называется точкой устранимого разрыва функции , если в этой точке односторонние пределы конечны и равны между собой, но не равны значению функции в этой точке; или функция в точке не определена (рис. 1).

Рис. 1

   

Точка называется точкой разрыва первого рода функции , если в этой точке односторонние пределы конечны и не равны между собой (рис. 2).

   

Рис. 2

Модуль разности значений односторонних пределов называется скачком функции.

Пример. На рисунке 2 скачок функции равен

Точка называется точкой разрыва второго рода функции , если в этой точке, по крайней мере, один из односторонних пределов равен бесконечности или не существует (рис. 3).

Рис. 3

Примеры решения задач

ПРИМЕР
Задание Исследовать функцию на непрерывность и классифицировать точки разрыва.

   

Решение Функция является непрерывной как отношение двух непрерывных функций (многочленов), разрыв может быть лишь в точках, в которых знаменатель обращается в нуль, то есть

   

Итак, если разрыв есть, то он может быть лишь в точках . Исследуем функцию на непрерывность в этих точках. Для этого найдем односторонние пределы:

   

   

аналогично

   

Поскольку односторонние пределы бесконечны, то в точке функция имеет разрыв второго рода.

Аналогично для второй точки :

   

   

то есть и точка – точка разрыва другого роду.

Ответ Функция терпит разрыв второго рода в точках
Понравился сайт? Расскажи друзьям!

ru.solverbook.com

точка разрыва первого рода — ПриМат

 Определение:

Точки в которых функция не является непрерывной называется точкой разрыва.

Классификация точек разрыва.

Определение:

Если существует конечный предел справа 

 и,

причём  то точка  называется точкой устранимого разрыва.(название устранимый, оправдывает себя), его можно устранить изменив значение функций в точке .

Пример

1) 

точка 0-точка устранимого разрыва.

 

 

 

 

 

2)  

 точка устранимого разрыва.

Определение:

Если существуют конечные односторонние пределы

  и   , то точка  называется точкой разрыва первого рода.

Примеры

1)

 

 

 

 

 

2)

Определение:

Точка  называется точкой разрыва второго рода, если она не является точкой разрыва первого рода и точкой устранимого разрыва, то есть если хотя бы один из сторонних пределов либо не существует, либо бесконечен.

Пример

точка разрыва второго рода.

Рекомендации

 Учебники :
  • Кудрявцев Л.Д. «Математический анализ» Том 1, Глава 1, § 5, Тема 5.1 «Точки непрерывности и точки разрыва функции» стр.84-87;
  •  Фильтенгольц Г.М. «Курс дифференциального и интегрального исчисления» Том 1, Глава 2, § 4 «Непрерывность и разрывы функций»  стр.146-167 ;
  • Ильин В.А.,Позняк Э.Г. «Основы математического анализа» Часть1, Глава 4, § 8  «Классификация точек разрыва функции» стр.143-145.
Сборники задач:
  • Демидович Б.П. «Сборник упражнений по амтематическому анализу» 13-еиздание, исправленное, Отдел 1, § 7 «Непрерывность функции» стр.77-87;
  • Дороговцев А.Я. «Математический анализ» Глава 3, § 2 «Непрерывные функции»  стр.50-58.

"Разрывность функции"

Лимит времени: 0

Информация

Тест расчитан на людей которые внимательно изучили разделы: «Точки разрыва монотонной функции» и «Классификация точек разрыва», и следовали всем рекомендациям

Вы уже проходили тест ранее. Вы не можете запустить его снова.

Тест загружается...

Вы должны войти или зарегистрироваться для того, чтобы начать тест.

Вы должны закончить следующие тесты, чтобы начать этот:

  1. С ответом
  2. С отметкой о просмотре
  1. Задание 1 из 5

    Количество баллов: 8

    Как классифицируются точки разрыва?

    Правильно

    Неправильно

  2. Задание 2 из 5

    Количество баллов: 6

    Доказательство теоремы о разрыве монотонной функции легко следует из …

    Правильно

    Неправильно

  3. Задание 3 из 5

    Количество баллов: 6

    Закончите выражение!

    Правильно

    Неправильно

  4. Задание 4 из 5

    Количество баллов: 6

    Соотнесите функции с их названиями!

    • $$f(x)=\begin{cases}1, & \text{ } x\in \mathbb{Q}\\ 0, & \text{ } x\in \mathbb{R}\setminus \mathbb{Q} \end{cases}$$
    • $$f(x)=\begin{cases}\frac{1}{q}, & \text{ } x=\frac{p}{q} ,p\in \mathbb{Z}, q\in \mathbb{N}\\ 0, & \text{ } x\in \mathbb{R}\setminus \mathbb{Q} \end{cases}$$
    • $$f(x)=\begin{cases}\frac{\sin x}{x}, & \text{ } x\neq 0 \\ 0, & \text{ } x= 0 \end{cases}$$
    • $$f(x)=\begin{cases}1, & \text{ } x\geq 0,x\in \mathbb{R}\\ 0, & \text{ } x
    • $$f(x)=\begin{cases}-1, & \text{ } x 0 \end{cases}$$
    • Функция Дирихле

    • Функция Римана

    • Функция с устранимым разрывом

    • Ступенчатая функция

    • Функция знака

    Правильно

    Неправильно

  5. Задание 5 из 5

    Количество баллов: 6

    Если существуют конечные односторонние пределы и ,то точка …

    Правильно

    Неправильно

Таблица лучших: "Разрывность функции"

максимум из 32 баллов Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

(Основной материал был взят из курса Математического анализа ,1 курс,1 семестр (доц. Лысенко З.М.))

Поделиться ссылкой:

ib.mazurok.com

Классификация точек разрыва

Увлекательная жизнь функций богата всякими особенными точками, и точки разрыва лишь одна из страничек их биографии.

Примечание: на всякий случай остановлюсь на элементарном моменте: точка разрыва – это всегда отдельно взятая точка – не бывает «несколько точек разрыва подряд», то есть, нет такого понятия, как «интервал разрывов».

Данные точки в свою очередь подразделяются на две большие группы: разрывы первого рода и разрывы второго рода. У каждого типа разрыва есть свои характерные особенности, которые мы рассмотрим прямо сейчас:

Точка разрыва первого рода

Если в точке  нарушено условие непрерывности и односторонние пределы конечны, то она называется точкой разрыва первого рода.

Начнём самого с оптимистичного случая. По первоначальной задумке урока я хотел рассказать теорию «в общем виде», но чтобы продемонстрировать реальность материала, остановился на варианте с конкретными действующими лицами.

Уныло, как фото молодожёнов на фоне Вечного огня, но нижеследующий кадр общепринят. Изобразим на чертеже график функции : Данная функция непрерывна на всей числовой прямой, кроме точки . И в самом деле, знаменатель же не может быть равен нулю. Однако в соответствии со смыслом предела – мы можем бесконечно близко приближаться к «нулю» и слева и справа, то есть, односторонние пределы существуют и, очевидно, совпадают: (Условие №2 непрерывности выполнено).

Но функция не определена в точке , следовательно, нарушено Условие №1 непрерывности, и функция  терпит разрыв в данной точке.

Разрыв такого вида (с существующим общим пределом) называют устранимым разрывом. Почему устранимым? Потому что функцию можно доопределить в точке разрыва:

Странно выглядит? Возможно. Но такая запись функции ничему не противоречит! Теперь разрыв устранён и все счастливы: Выполним формальную проверку: 1)  – функция определена в данной точке; 2)  – общий предел существует; 3)  – предел функции в точке равен значению данной функции в данной точке.

Таким образом, все три условия выполнены, и функция непрерывна в точке  по определению непрерывности функции в точке.

Впрочем, ненавистники матана могут доопределить функцию нехорошим способом, например : Любопытно, что здесь выполнены первые два условия непрерывности: 1)  – функция определена в данной точке; 2)  – общий предел существует.

Но третий рубеж не пройден: , то есть предел функции в точке не равензначению данной функции в данной точке.

Таким образом, в точке  функция терпит разрыв.

Второй, более грустный случай носит название разрыва первого рода со скачком. А грусть навевают односторонние пределы, которые конечны и различны. Пример изображён на втором чертеже урока. Такой разрыв  возникает, как правило, в кусочно-заданных функциях, о которых уже упоминалось в статье о преобразованиях графиков.

Рассмотрим кусочную функцию  и выполним её чертёж. Как построить график? Очень просто. На полуинтервале  чертим фрагмент параболы  (зеленый цвет), на интервале  – отрезок прямой  (красный цвет) и на полуинтервале  – прямую  (синий цвет).

При этом в силу неравенства  значение  определено для  квадратичной функции  (зелёная точка), и в силу неравенства , значение  определено для линейной функции  (синяя точка): В самом-самом тяжёлом случае следует прибегнуть к поточечному построению каждого куска графика (см. первый урок о графиках функций).

Сейчас нас будет интересовать только точка . Исследуем её на непрерывность:

1)  – функция определена в данной точке.

2) Вычислим односторонние пределы.

Слева у нас красный отрезок прямой, поэтому левосторонний предел: 

Справа – синяя прямая, и правосторонний предел: 

В результате получены конечные числа, причем они не равны. Поскольку односторонние пределы конечны и различны: , то наша функция терпит разрыв первого рода со скачком.

Логично, что разрыв не устраним – функцию действительно не доопределить и «не склеить», как в предыдущем примере.

studfiles.net



О сайте

Онлайн-журнал "Автобайки" - первое на постсоветском пространстве издание, призванное осветить проблемы радовых автолюбителей с привлечение экспертов в области автомобилестроения, автоюристов, автомехаников. Вопросы и пожелания о работе сайта принимаются по адресу: Онлайн-журнал "Автобайки"