Как найти точку пересечения двух графиков функций. Точка пересечения графиков функций

БЕСПЛАТНО ответим на Ваши вопросы
По лишению прав, ДТП, страховом возмещении, выезде на встречную полосу и пр. Ежедневно с 9.00 до 21.00
Москва и МО +7 (499) 938-51-97
С-Петербург и ЛО +7 (812) 467-32-86
Бесплатный звонок по России 8-800-350-23-69 доб.418

Как найти координаты точки пересечения графиков функций?

Как найти?

  1. Чтобы найти координаты точки пересечения графиков функций нужно приравнять обе функции друг к другу, перенести в левую часть все члена, содержащие , а в правую остальные и найти корни, полученного уравнения.
  2. Второй способ заключается в том, что нужно составить систему уравнений и решить её путём подстановки одной функции в другую
  3. Третий способ подразумевает графическое построение функций и визуальное определение точки пересечения.

Случай двух линейных функций

Рассмотрим две линейные функции и . Эти функции называются прямыми. Построить их достаточно легко, нужно взять любые два значения и и найти и . Затем повторить тоже самое и с функцией . Далее визуально найти координату точки пересечения графиков функций.

Следует знать, что линейные функции имеют только одну точку пересечения и только тогда, когда . Иначе, в случае функции параллельны друг другу, так как - это коэффициент угла наклона. Если , но , тогда точкой пересечения будет . Это правило желательно запомнить для ускоренного решения задач.

Пример 1
Пусть даны и . Найти координаты точки пересечения графиков функций.
Решение

Как это сделать? Так как представлены две линейные функции, то первым делом смотрим на коэффициент угла наклона обеих функций и . Замечаем, что , поэтому существует одна точка пересечения. Найдём её с помощью уравнения :

Переносим слагаемые с в левую часть, а остальные в правую:

Получили абциссу точки пересечения графиков, а теперь найдём ординату. Для этого подставим в любое из уравнений хоть в , либо в :

Итак, - является точкой пересечения графиков двух линейных функций.

Ответ
Пример 2
Дано и . Найти точки пересечения графиков функций.
Решение
Как найти? Опять же обращаем внимание на то, что угловые коэффициенты равны . Это означает, что линейные функции параллельны между собой, поэтому у них нет точек пересечения!
Ответы
Графики функций параллельны, нет точек пересечения.

 Случай двух нелинейных функций 

Пример 3
Найти координаты точки пересечения графиков функций: и
Решение

Как быть с двумя нелинейными функциями? Алгоритм простой: приравниваем уравнения друг к другу и находим корни:

Разносим по разным сторонам уравнения члены с и без него:

Найдена абцисса искомой точки, но её недостаточно. Ещё нехватает ординаты . Подставляем в любое из двух уравнений условия задачи. Например:

- точка пересечения графиков функций

Ответ

В статье: "Как найти координаты точки пересечения графиков функций?" было рассказано о случае двух линеных функций, и разобран случай с нелинейными. Были приведены способы, методы решения, а так же практические примеры.

xn--24-6kcaa2awqnc8dd.xn--p1ai

Найти точку пересечения графиков линейных функций — Науколандия

Если даны две линейные функции вида y = kx + m, то их графики (прямые) могут вообще не пересекаться, если параллельны друг другу. Во всех остальных случаях они будут пересекаться в одной точке.

Графики двух линейных функций параллельны друг другу, если имеют одинаковый угловой коэффициент (k) и различное значение m (если и m будет одно и то же, то это будет одна и та же функция). Действительно, ведь k определяет угол между осью x и прямой, а значит у графиков линейных функций, отличающихся лишь значением m, угол с осью абсцисс один и тот же, и, следовательно, графики будут параллельны. Пример: графики функций y = 2x – 3 и y = 2x + 1 параллельны и, следовательно, не пересекаются.

Если две линейные функции имеют различные k, но одинаковые m, то они пересекаются в точке (0; m). Действительно, если x = 0, то независимо от того, чему равен k, y становится равен m. Пример: y = –1.3x + 8 и y = 2.1x + 8.

Если две линейные функции имеют различные и k и m, то они пересекаются в какой-то точке, которую можно найти графическим способом. Сначала на координатной плоскости чертится одна прямая, затем вторая, далее находится их точка пересечения. Для того, чтобы начертить прямую линейной функции, надо найти две точки, которые принадлежат прямой. Для этого берут два различных x и вычисляют y. Это нужно сделать для каждой из двух функция. При этом не обязательно брать одинаковые x. Следует брать те, вычислять с которыми удобнее, или их будет проще нанести на координатную плоскость.

Также можно решить уравнение. Ведь точка пересечения — это та точка, где у обоих функций одинаковы x и y. Если y одинаковы, то правая часть одного уравнения равна правой части другой. То есть их можно приравнять и найти значение x, при котором это равенство верно. А далее, имея x, можно вычислить y, через любую из функций. Пример:Даны y = 4x – 5 и y = –2x + 14x – 5 = –2x + 14x + 2x = 1 + 56x = 6x = 1y = 4 * 1 – 5 = –1 или y = –2 * 1 + 1 = –1

Таким образом точка пересечения (1; –1).

scienceland.info

Как на Геогебре найти точки пересечения графиков

27 июня 2013 Автор: Бакытжан

Найдем точки пересечения графиков функций

Конечно же для этого воспользуемся Геогеброй. Итак, открываем программу. Указываем Алгебра и графики.

В самом низу окна имеется поле Ввод — это строка ввода формулы. Туда мы должны ввести формулу первой функции.

После этого нажмите ОК. Нарисуется график функции. В данном случае будет парабола.

Точно также поступим со второй функцией. Сперва наберем формулу в строке ввода формул.

Жмем ОК. Появится график второй функции.

Мы видим, что вторая точка пересечения графиков осталась за кадром. Чтобы эта точка появилась в обозримом поле можно покрутить колесико мыши, а лучше воспользоваться самой крайней кнопочкой на панели инструментов. Я ее обвел для наглядности. С ее помощью график можно перемещать налево или направо, увеличивать или уменьшать и так далее.

Теперь давайте найдем точки пересечения графиков. Нажимаем на белую точку в нижнем правом углу на картине снизу и выбираем Пересечение двух объектов.

Затем наводим указателем мыши на то место, где графики пересекаются.

Нажимаем левую кнопку мыши. Сразу появится точка А на графике и она же с указанием координат на панели объектов. Я эти места обвел.

Аналогично находим точку В — вторую точку пересечения графиков.

Как видите на GeoGebra не составило особого труда построить графики функций и указать точки, где они пересекаются.

Рубрика: GeoGebra в помощь, Статьи. Метки: геогебра, графики функции, ИКТ, точки пересечения
Навигация по записям
Предыдущий пост:     ← Площадь треугольника с помощью GeoGebraСледующий пост:     Динамический график на GeoGebra? Это просто! →

ourmath.ru

Точки пересечения графика осями | Алгебра

Как найти точки пересечения графика функции с осями координат?

С осью абсцисс график функции может иметь любое количество общих точек (или ни одной). С осью ординат — не более одной (так как по определению функции каждому значению аргумента ставится в соответствие единственное значение функции).

Чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).

Чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).

Примеры.

1) Найти точки пересечения графика линейной функции y=kx+b с осями координат.

Решение:

В точке пересечения графика функции с осью Ox y=0:

kx+b=0, => x= -b/k. Таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0).

В точке пересечения с осью Oy x=0:

y=k∙0+b=b. Отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).

Например, найдём точки пересечения с осями координат графика линейной функции y=2x-10.

2x-10=0; x=5. С Ox график пересекается в точке (5; 0).

y=2∙0-10=-10. С Oy график пересекается в точке (0; -10).

2) Найти точки пересечения графика квадратичной функции y=ax²+bx+c с осями координат.

Решение:

В точке пересечения графика с осью абсцисс y=0. Значит, чтобы найти точки пересечения графика квадратичной функции (параболы) с осью Ox, надо решить квадратное уравнение ax²+bx+c=0.

В зависимости от дискриминанта, парабола  пресекает ось абсцисс в одной точке или в двух точках либо не пересекает Ox.

В точке пересечения графика с осью Oy x=0.

y=a∙0²+b∙0+c=с. Следовательно, (0; с) — точка, в которой парабола пересекает ось ординат.

Например, найдём точки пересечения с осями координат графика функции y=x²-9x+20.

x²-9x+20=0

x1=4; x2=5. График пересекает ось абсцисс в точках (4; 0) и (5; 0).

y=0²-9∙0+20=20. Отсюда, (0; 20) — точка пересечения параболы y=x²-9x+20 с осью ординат.

www.algebraclass.ru

Как найти точку пересечения двух графиков функций

4. Решите уравнение. (7х+1)-(6х +3)=5. Ответ: 5.Выполните действия: (2a2b)3. а) 2a6b3 б) 8a6b3 в) 2a5b3 г) 8a5b3. 6. Найдите координаты точки пересечения графиков функций у=3 и у=2х-7. Ответ: х= у= 7. Соотнесите функции, заданные формулами с их графиками. 1)у=1-2х 2)у=х 3)у=-3.

Науколандия

Статьи по естественным наукам и математике

Найти точку пересечения графиков линейных функций

Если даны две линейные функции вида y = kx + m, то их графики (прямые) могут вообще не пересекаться, если параллельны друг другу. Во всех остальных случаях они будут пересекаться в одной точке.

Графики двух линейных функций параллельны друг другу, если имеют одинаковый угловой коэффициент ( k ) и различное значение m (если и m будет одно и то же, то это будет одна и та же функция). Действительно, ведь k определяет угол между осью x и прямой, а значит у графиков линейных функций, отличающихся лишь значением m, угол с осью абсцисс один и тот же, и, следовательно, графики будут параллельны. Пример: графики функций y = 2x – 3 и y = 2x + 1 параллельны и, следовательно, не пересекаются.

Если две линейные функции имеют различные k, но одинаковые m, то они пересекаются в точке (0; m ). Действительно, если x = 0, то независимо от того, чему равен k, y становится равен m. Пример: y = –1.3 x + 8 и y = 2.1 x + 8.

Если две линейные функции имеют различные и k и m, то они пересекаются в какой-то точке, которую можно найти графическим способом. Сначала на координатной плоскости чертится одна прямая, затем вторая, далее находится их точка пересечения. Для того, чтобы начертить прямую линейной функции, надо найти две точки, которые принадлежат прямой. Для этого берут два различных x и вычисляют y. Это нужно сделать для каждой из двух функция. При этом не обязательно брать одинаковые x. Следует брать те, вычислять с которыми удобнее, или их будет проще нанести на координатную плоскость.

Также можно решить уравнение. Ведь точка пересечения — это та точка, где у обоих функций одинаковы x и y. Если y одинаковы, то правая часть одного уравнения равна правой части другой. То есть их можно приравнять и найти значение x, при котором это равенство верно. А далее, имея x, можно вычислить y, через любую из функций. Пример:

Как найти точку пересечения двух графиков функций

Науколандия

Статьи по естественным наукам и математике

Найти точку пересечения графиков линейных функций

Если даны две линейные функции вида y = kx + m, то их графики (прямые) могут вообще не пересекаться, если параллельны друг другу. Во всех остальных случаях они будут пересекаться в одной точке.

Графики двух линейных функций параллельны друг другу, если имеют одинаковый угловой коэффициент ( k ) и различное значение m (если и m будет одно и то же, то это будет одна и та же функция). Действительно, ведь k определяет угол между осью x и прямой, а значит у графиков линейных функций, отличающихся лишь значением m, угол с осью абсцисс один и тот же, и, следовательно, графики будут параллельны. Пример: графики функций y = 2x – 3 и y = 2x + 1 параллельны и, следовательно, не пересекаются.

Если две линейные функции имеют различные k, но одинаковые m, то они пересекаются в точке (0; m ). Действительно, если x = 0, то независимо от того, чему равен k, y становится равен m. Пример: y = –1.3 x + 8 и y = 2.1 x + 8.

Если две линейные функции имеют различные и k и m, то они пересекаются в какой-то точке, которую можно найти графическим способом. Сначала на координатной плоскости чертится одна прямая, затем вторая, далее находится их точка пересечения. Для того, чтобы начертить прямую линейной функции, надо найти две точки, которые принадлежат прямой. Для этого берут два различных x и вычисляют y. Это нужно сделать для каждой из двух функция. При этом не обязательно брать одинаковые x. Следует брать те, вычислять с которыми удобнее, или их будет проще нанести на координатную плоскость.

Также можно решить уравнение. Ведь точка пересечения — это та точка, где у обоих функций одинаковы x и y. Если y одинаковы, то правая часть одного уравнения равна правой части другой. То есть их можно приравнять и найти значение x, при котором это равенство верно. А далее, имея x, можно вычислить y, через любую из функций. Пример:

Как найти точку пересечения двух графиков функций

Как найти точку пересечения двух графиков функций

Найти точку пересечения графика функций:у=2х-1,у=5-х

    Попроси больше объяснений Следить Отметить нарушение

Герасименко1998 07.09.2012

Ответы и объяснения

    EvaEvaEva главный мозг

Точка А пересечения графиков имеет координаты х = 2, у = 3

    Комментарии Отметить нарушение

Приравниваем две функции одна к другой:

Находим точку пересечения графиков по оси абсцисс нахождением неизвесной:

Находим точку пересечения графиков по оси ординат :

Точка пересечения графиков функции: (2;3)

poiskvstavropole.ru

Как найти точку пересечения графиков функций в excel

РЕШЕНИЕ: ||| Вариант решения 1. ||| 1) Высота, проведенная из вершины прямого угла, делит треугольник на два подобных треугольника между собой и подобных данному. Из подобия треугольников АВС и НСВ следует: В=НСА. 2) Медиана, проведенная из вершины прямого угла, равна половине.

Как найти точку пересечения графиков функций в excel

Этот файлик может пригодиться для оформления задач поиска точки пересечения линейных графиков, построенных по экспериментальным данным.

Графики выстраиваются по точкам эксперимента. Рассчитываются коэффициенты А и В функций, рассчитывается точка пересечения и отображается на графике. Теперь при изменении значений точка корректно отображается на графике.

Нашел у Павлова пример с поиском многоточечных пересечений. Совсем немножко добавил от себя.

Может тоже пригодиться для оформления лабораторных.

Как найти точку пересечения графиков функций в excel

Точка пересечения графиков в Excel

Изучим способы поиска Точек пересечения двух графиков и графика с осью координат, а также варианты их отображения в Excel.

Если графики заданы какими-либо алгебраическими функциями, то точное решение оптимальнее искать математически, приравняв функции друг к другу.

В данной статье мы разберем как Найти точки пересечения для линейного графика, в котором линии имеют одинаковые координаты по оси абсцисс (горизонтальная) и различные координаты по оси ординат (вертикальная).

Как мы помним из школьного курса математики, через две любые несовпадающие точки можно провести прямую и только одну.

Поэтому зная их координаты мы можем составить уравнение прямой. Таким образом решая систему уравнений, состоящую из уравнений двух прямых, мы можем найти место пересечения:

Пересечение двух графиков

Предположим, что у нас имеется таблица с координатами двух линий:

Построим на основе этих данных точечную диаграмму. Выделяем диапазон данных A1:K3 и на панели вкладок выбираем Вставка -> Диаграмма -> Точечная -> Точечная с прямыми отрезками.

В итоге получаем точечную диаграмму с двумя линиями:

Как видим на диаграмме линии пересеклись в 5 местах. В общем случае подобных точек может быть сколь угодно много, поэтому вручную находить каждую из них представляется достаточно трудоемким процессом.

Чтобы упростить работу и автоматизировать расчет воспользуемся средствами Visual Basic.

Переходим в редактор VBA (в панели вкладок выбираем Разработчик -> Visual Basic или воспользуемся сочетанием клавиш Alt + F11), создаем модуль и записываем в него макрос (напротив каждой строчки даются пояснения к коду):

Переходим обратно в Excel, нажимаем на диаграмму (для активации) и запускаем макрос:

Осталось только добавить на свое усмотрение некоторые детали для улучшения визуализации и получаем итоговый вариант:

Для удобства и экономии времени, определение вида и цвета отображаемой точки, формата подписи данных и прочих настроек, можно также добавить в код макроса.

Пересечение графика с осями координат

Аналогичное решение можно применить и в случае поиска мест пересечения графика с осью абсцисс.

Для этого в качестве координат одной из линий установим нулевые значения:

Применяем к графику макрос и получаем:

Удачи вам и до скорых встреч на страницах блога Tutorexcel. ru!

Поделиться с друзьями:
Поиск по сайту:

Похожие статьи:

Комментарии (6)

Очень здорово, вопрос один. А если график 3 или более функций и можно ли как то значения автоматом в таблицу занести

В случае если на графике 3 линии, то в макросе нужно будет дополнительно прописать проверки на пересечение каждой пары линий (т. е. первой и второй, первой и третьей, второй и третьей).

Координаты точек пересечений хранятся в массивах ArrayT1 (ось X) и ArrayT2 (ось Y), соответственно чтобы занести эти координаты в таблицу, мы должны приравнять значения ячеек таблицы к элементам массивов.

Спасибо за ответ, только если честно я конструктор, и незнаком с программированием, скажите возможно ли связаться с Вами для решения моей проблемы?

Здравствуйте, помогите пожалуйста, мне нужно найти пересечение двух графиков, точки взяты произвольно, формул никаких нет. Я пробовала вставить вашу программу, но выдает ошибку

Анастасия, в данной статье разбирается случай, когда графики имеют одинаковые координаты по горизонтальной оси, и разные координаты по вертикальной.

В приведенном примере, в случае с красной линией, это условие не выполняется, вероятно по этой причине возникает ошибка.

Добавить комментарий Отменить ответ

    Даты и время (6) Дашборды (2) Диаграммы (13) Диапазоны (5) Книги и листы (12) Макросы/VBA (9) Математика (13) Основы (4) Приемы (10) Сводные таблицы (1) Текст (13) Функции (17)

Свежие записи

Содержание

Читайте ранее:
Обратная матрица в Excel

Подробно рассмотрим особенности вычисления обратной матрицы в Excel и примеры использования функции МОБР.

Как найти точку пересечения графиков функций в excel

Точки пересечения графиков — MS Excel

Надо найти точки пересечения их. я сделал, но они почему то не пересекаются, может кто подсказать что я делал не так? сейчас скину формулу из ячеек

Как в графике отобразить точки пересечения? А также также рядом указать сумму точки x+y как в примере. То есть пример точки 31=30+1 или.

Доброго времени суток! Являюсь полным нубом относительно Excel. Задача такая: Построить графики двух уравнений и найти их точки.

Здравствуйте! Помогите, пожалуйста, правильно построить графики в Excel. Вот на этом рисунке данные и графики, которые у меня получаются.

Доброго времени суток. Нужна ваша помощь. Есть некие графики сделанные мною в другой программе, но потребовалась все это построить в.

Помогите построить 5 графиков в одной сетке(поле) зависимость объема от обратного давления. Первый столбец — объем, он постоянен для всех.

Здравствуйте, у меня есть задания которые необходимо выполнить в excele. У меня не получается выполнить задание под буквой В в первом.

Да, дейстаительно они не пересекаются. Т.е. система уравнений не имеет корней.

А откуда третье уравнение?

Решение из маткад, у системы комплексные корни

Bantline везет же вам с задачами.

Krasme, я знаю, что не окружность. то я вчера где-то накосячил. Сам сегодня удивился

Здравствуйте, уважаемые Специалисты! Помогите пожалуйста с совмещением двух графиков различного типа(если это конечно возможно). У меня.

Помогите разобраться! Что к чему? Выделенные слова вообще могут использоваться в тексте программы? Private Sub CommandButton1_Click() .

Всем привет. Как можно отобразить все значения на одном графике, а не на двух?

poiskvstavropole.ru

Как вычислить координаты точек пересечения графиков функций

Построить кривую, заданную уравнением в полярной системе координат. Есть следующее уравнение r = 2sin4? r- это у меня «ро» f- это «фи» К сожалению,не нашла в своих лекциях подробного описания как это сделать. Полазив по интернету поняла только,что это будет многолистник или.

Как найти координаты точки пересечения графиков функций?

Случай двух линейных функций

Рассмотрим две линейные функции и. Эти функции называются прямыми. Построить их достаточно легко, нужно взять любые два значения и и найти и. Затем повторить тоже самое и с функцией. Далее визуально найти координату точки пересечения графиков функций.

Следует знать, что линейные функции имеют только одну точку пересечения и только тогда, когда. Иначе, в случае функции параллельны друг другу, так как — это коэффициент угла наклона. Если, но, тогда точкой пересечения будет. Это правило желательно запомнить для ускоренного решения задач.

Как это сделать? Так как представлены две линейные функции, то первым делом смотрим на коэффициент угла наклона обеих функций и. Замечаем, что, поэтому существует одна точка пересечения. Найдём её с помощью уравнения :

Переносим слагаемые с в левую часть, а остальные в правую:

Получили абциссу точки пересечения графиков, а теперь найдём ординату. Для этого подставим в любое из уравнений хоть в, либо в :

Итак, — является точкой пересечения графиков двух линейных функций.

Случай двух нелинейных функций

Как быть с двумя нелинейными функциями? Алгоритм простой: приравниваем уравнения друг к другу и находим корни:

Разносим по разным сторонам уравнения члены с и без него:

Найдена абцисса искомой точки, но её недостаточно. Ещё нехватает ординаты. Подставляем в любое из двух уравнений условия задачи. Например:

— точка пересечения графиков функций

В статье: «Как найти координаты точки пересечения графиков функций?» было рассказано о случае двух линеных функций, и разобран случай с нелинейными. Были приведены способы, методы решения, а так же практические примеры.

Как вычислить координаты точек пересечения графиков функций

Науколандия

Статьи по естественным наукам и математике

Найти точку пересечения графиков линейных функций

Если даны две линейные функции вида y = kx + m, то их графики (прямые) могут вообще не пересекаться, если параллельны друг другу. Во всех остальных случаях они будут пересекаться в одной точке.

Графики двух линейных функций параллельны друг другу, если имеют одинаковый угловой коэффициент ( k ) и различное значение m (если и m будет одно и то же, то это будет одна и та же функция). Действительно, ведь k определяет угол между осью x и прямой, а значит у графиков линейных функций, отличающихся лишь значением m, угол с осью абсцисс один и тот же, и, следовательно, графики будут параллельны. Пример: графики функций y = 2x – 3 и y = 2x + 1 параллельны и, следовательно, не пересекаются.

Если две линейные функции имеют различные k, но одинаковые m, то они пересекаются в точке (0; m ). Действительно, если x = 0, то независимо от того, чему равен k, y становится равен m. Пример: y = –1.3 x + 8 и y = 2.1 x + 8.

Если две линейные функции имеют различные и k и m, то они пересекаются в какой-то точке, которую можно найти графическим способом. Сначала на координатной плоскости чертится одна прямая, затем вторая, далее находится их точка пересечения. Для того, чтобы начертить прямую линейной функции, надо найти две точки, которые принадлежат прямой. Для этого берут два различных x и вычисляют y. Это нужно сделать для каждой из двух функция. При этом не обязательно брать одинаковые x. Следует брать те, вычислять с которыми удобнее, или их будет проще нанести на координатную плоскость.

Также можно решить уравнение. Ведь точка пересечения — это та точка, где у обоих функций одинаковы x и y. Если y одинаковы, то правая часть одного уравнения равна правой части другой. То есть их можно приравнять и найти значение x, при котором это равенство верно. А далее, имея x, можно вычислить y, через любую из функций. Пример:

Как вычислить координаты точек пересечения графиков функций

Науколандия

Статьи по естественным наукам и математике

Найти точку пересечения графиков линейных функций

Если даны две линейные функции вида y = kx + m, то их графики (прямые) могут вообще не пересекаться, если параллельны друг другу. Во всех остальных случаях они будут пересекаться в одной точке.

Графики двух линейных функций параллельны друг другу, если имеют одинаковый угловой коэффициент ( k ) и различное значение m (если и m будет одно и то же, то это будет одна и та же функция). Действительно, ведь k определяет угол между осью x и прямой, а значит у графиков линейных функций, отличающихся лишь значением m, угол с осью абсцисс один и тот же, и, следовательно, графики будут параллельны. Пример: графики функций y = 2x – 3 и y = 2x + 1 параллельны и, следовательно, не пересекаются.

Если две линейные функции имеют различные k, но одинаковые m, то они пересекаются в точке (0; m ). Действительно, если x = 0, то независимо от того, чему равен k, y становится равен m. Пример: y = –1.3 x + 8 и y = 2.1 x + 8.

Если две линейные функции имеют различные и k и m, то они пересекаются в какой-то точке, которую можно найти графическим способом. Сначала на координатной плоскости чертится одна прямая, затем вторая, далее находится их точка пересечения. Для того, чтобы начертить прямую линейной функции, надо найти две точки, которые принадлежат прямой. Для этого берут два различных x и вычисляют y. Это нужно сделать для каждой из двух функция. При этом не обязательно брать одинаковые x. Следует брать те, вычислять с которыми удобнее, или их будет проще нанести на координатную плоскость.

Также можно решить уравнение. Ведь точка пересечения — это та точка, где у обоих функций одинаковы x и y. Если y одинаковы, то правая часть одного уравнения равна правой части другой. То есть их можно приравнять и найти значение x, при котором это равенство верно. А далее, имея x, можно вычислить y, через любую из функций. Пример:

poiskvstavropole.ru



О сайте

Онлайн-журнал "Автобайки" - первое на постсоветском пространстве издание, призванное осветить проблемы радовых автолюбителей с привлечение экспертов в области автомобилестроения, автоюристов, автомехаников. Вопросы и пожелания о работе сайта принимаются по адресу: Онлайн-журнал "Автобайки"