Понятие логарифма и антилогарифма. Таблица антилогарифмов

БЕСПЛАТНО ответим на Ваши вопросы
По лишению прав, ДТП, страховом возмещении, выезде на встречную полосу и пр. Ежедневно с 9.00 до 21.00
Москва и МО +7 (499) 938-51-97
С-Петербург и ЛО +7 (812) 467-32-86
Бесплатный звонок по России 8-800-350-23-69 доб.418

Антилогарифм числа n

Данный калькулятор подсчитывает антилогарифм (то есть число, которому соответствует значение логарифма, если проще, то глядя на формулу log n = а, число n является антилогарифмом числа a).

от сюда выходит, что антилогарифм N по основанию B числа A равен B в степени A

Вы также можете посмотреть и работать с еще одним калькулятором данной тематики - Логарифм:

The field is not filled.

'%1' is not a valid e-mail address.

Please fill in this field.

The field must contain at least% 1 characters.

The value must not be longer than% 1 characters.

Field value does not coincide with the field '%1'

An invalid character. Valid characters:'%1'.

Expected number.

It is expected a positive number.

Expected integer.

It is expected a positive integer.

The value should be in the range of [%1 .. %2]

The '% 1' is already present in the set of valid characters.

The field must be less than 1%.

The first character must be a letter of the Latin alphabet.

Su

Mo

Tu

We

Th

Fr

Sa

January

February

March

April

May

June

July

August

September

October

November

December

century

B.C.

%1 century

An error occurred while importing data on line% 1. Value: '%2'. Error: %3

Unable to determine the field separator. To separate fields, you can use the following characters: Tab, semicolon (;) or comma (,).

%3.%2.%1%4

%3.%2.%1%4 %6:%7

s.sh.

u.sh.

v.d.

z.d.

yes

no

Wrong file format. Only the following formats: %1

Please leave your phone number and / or email.

hostciti.net

Понятие логарифма и антилогарифма

Есть еще неясные моменты при использовании экспоненциальной формы записи чисел. Если мы имеем дело с числами с большим количеством нулей, все достаточно просто. Но предположим, что надо перемножить 6837 и 1822. Если мы запишем эти числа в экспоненциальной форме, то получим: 6,837х103и 1,822х103. Перемножить экспоненциальные части несложно, а вот что делать с числами 6,837 и 1,822? Мы столкнулись с той же задачей, как и при перемножении больших чисел, с той только разницей, что надо следить за положением десятичного знака. Другими словами, нам нужно представить число в такой форме, чтобы неэкспоненциальная часть была как можно короче или равнялась 1. Поскольку речь идет о десятеричной системе, нам понадобятся десятичные экспоненты.

Теперь давайте подробнее рассмотрим экспоненты на основе 10. Начнем с 100=1 и 101=10. А чему равны экспоненты между 0 и 1? Например, 100,5=102=лЛо , что приблизительно равно 3,162278. Таким же способом (но с большими сложностями) можно получить значение 10 в степени от 0 до 1. Эти величины подсчитаны и собраны в специальных справочниках в виде таблиц.

Поскольку в данном случае основанием всегда является число 10, то в таблицах обычно приводятся только показатели степени, то есть экспоненты. Отдельно записанная экспонента называется логарифмом, значение экспоненциального выражения в виде обычного числа называется антилогарифмом. Например, в выражении 102=100 справедливы следующие обозначения: —

2-логарифм 100,

а 100 — антилогарифм 2.

Таблица, приведенная ниже, в которой приведены антилогарифмы для ряда логарифмов, называется таблицей антилогарифмов.

В таблице приведены приближенные значения антилогарифмов, да и невозможно привести точные значения, потому что они существуют только для таких чисел, как 1000, 1010 и так далее. Однако величину антилогарифма можно вычислить с такой точностью (то есть до такого десятичного знака), которая требуется в данном конкретном случае.

Если мы пойдем в обратном направлении, мы можем любое число от 1 до 10 представить как 10 в какой-то степени. Другими словами, для каждого числа при помощи соответствующих методик можно вычислить эквивалентный логарифм.

Ниже приводится краткая таблица логарифмов для ряда обычных чисел. Подробные таблицы логарифмов, в которых можно найти логарифм для любого числа, содержатся в ряде справочников.

Материалы по теме:

Поделиться с друзьями:

Загрузка...

matemonline.com

Антилогарифмы, четырехзначная таблица - Справочник химика 21

    Для вычисления пользуются таблицей четырехзначных логарифмов и антилогарифмов  [c.163]

    IX. ПРАВИЛА ВЫЧИСЛЕНИЙ С ПОМОЩЬЮ ТАБЛИЦ ЧЕТЫРЕХЗНАЧНЫХ ЛОГАРИФМОВ И АНТИЛОГАРИФМОВ [c.424]

    Вычисления следует проводить, пользуясь четырехзначными таблицами логарифмов и антилогарифмов. [c.141]

    Вычисления следует проводить, пользуясь четырехзначными таблицами логарифмов и антилогарифмов (приложены в конце книги). [c.141]

    В е эти вычисления нужно делать, пользуясь таблицами четырехзначных логарифмов и антилогарифмов, с точностью, отвечающей точности анализа (т. е. до четырех значащих цифр). Наоборот, вычисления объемов концентрированной соляной кислоты при приготовлении ее растворов являются приближенными, и потому все соответствующие величины целесообразно округлять. [c.299]

    В большинстве случаев получаемые при анализе экспериментальные данные (веса и объемы) представляют собой числа с четырьмя значащими цифрами. Поэтому и результаты анализа в таких случаях содержат также четыре значащих цифры. Вычисления с такими числами всего удобнее проводить с помощью таблиц четырехзначных логарифмов и антилогарифмов. Эти таблицы дают как раз нужную степень точности и в то же время сильно облегчают вычисления. В тех случаях, когда результат анализа должен содержать три значащих цифры, можно также применять логарифмическую линейку. [c.64]

    Взамен обычной таблицы пятизначных логарифмов в конце книги приведена упрощенная таблица пятизначных логарифмов и антилогарифмов. Она занимает такой же объем, какой имеют таблицы четырехзначных логарифмов. Это достигнуто тем, что взамен действительных значений разностей между мантиссами даны средние их значения для каждой строки таблицы. Ошибки, возникающие при работе с этой таблицей, не превышают 0,00002. В других таблицах справочника приведены точные значения пятизначных мантисс логарифмов. [c.8]

    Во избежание непроизводительной траты труда и времени проводить вычисления с такими сложными числами следует обязательно с логарифмами. При этом вполне достаточную точность дают приложенные в конце книги таблицы четырехзначных логарифмов и антилогарифмов. Проделаем вычисления, пользуясь ими  [c.295]

    Для вычисления пользуются таблицей четырехзначных ло- гарифмов и антилогарифмов (приложения IX и X, стр. 547 и 549)  [c.169]

    Искомая величина равна антилогарифму числа 1,36, т.е. 23. Отметим, что точность проведенных здесь вычислений ограничена числом значащих цифр исходных численных величин и их логарифмов. Для большей точности следует пользоваться трехзначными, четырехзначными или пятизначными таблицами логарифмов. [c.521]

chem21.info

Калькулятор логарифма и антилогарифма онлайн

Логарифмирование — это операция, обратная возведению в степень. Если вы задаетесь вопросом, в какую степень нужно возвести 2, чтобы получить 10, то вам на помощь придет логарифм.

Обратная операция для возведения в степень

Возведение в степень — это повторяющееся умножение. Для возведения двойки в третью степень нам потребуется вычислить выражение 2 × 2 × 2. Обратная операция для умножения — это деление. Если верно выражение, что a × b = c, то обратное выражение b = a / c так же верно. Но как обратить возведение в степень? Задача обращения умножения имеет элегантное решение благодаря простому свойству, что a × b = b × a. Однако ab не равно ba, за исключением единственного случая, когда 22 = 42. В выражении ab = с, мы можем выразить a как корень b-ой степени из c, но как выразить b? Вот тут на сцене и появляются логарифмы.

Понятие логарифма

Давайте попробуем решить простое уравнение вида 2x = 16. Это показательное уравнение, так как нам требуется отыскать показатель степени. Для более простого понимания поставим задачу так: сколько раз нужно умножить двойку на саму себя, чтобы в результате получить 16? Очевидно, что 4, поэтому корень данного уравнения x = 4.

Теперь попробуем решить 2x = 20. Сколько раз нужно умножить двойку на саму себя, что бы получить 20? Это сложно, ведь 24 = 16, а 25 = 32. Рассуждая логически, корень этого уравнения располагается между 4 и 5, причем ближе к 4, возможно 4,3? Математики не терпят приблизительных вычислений и хотят знать точный ответ. Для этого они и используют логарифмы, а корнем этого уравнения будет x = log2 20.

Выражение log2 20 читается как логарифм 20 по основанию 2. Это и есть ответ, которого строгим математикам достаточно. Если вы хотите выразить это число точно, то вычислите его при помощи инженерного калькулятора. В этом случае log2 20 = 4,32192809489. Это иррациональное бесконечное число, а log2 20 — его компактная запись.

Таким элегантным способом вы можете решить любое простое показательное уравнение. Например, для уравнений:

  • 4x = 125, x = log4 125;
  • 12x = 432, x = log12 432;
  • 5x = 25, x = log5 25.

Последний ответ x = log5 25 математикам не понравится. Все потому, что log5 25 легко вычисляется и является целым числом, поэтому вы обязаны его определить. Сколько раз требуется умножить 5 на само себя, чтобы получить 25? Элементарно, два раза. 5 × 5 = 52 = 25. Поэтому для уравнения вида 5x = 25, x = 2.

Десятичный логарифм

Десятичный логарифм — это функция по основанию 10. Это популярный математический инструмент, поэтому он записывается иначе. К примеру, в какую степень нужно возвести 10, чтобы получить 30? Ответом был бы log10 30, однако математики сокращают запись десятичных логарифмов и записывают его как lg30. Точно также log10 50 и log10 360 записываются как lg50 и lg360 соответственно.

Натуральный логарифм

Натуральный логарифм — это функция по основанию e. В нем нет ничего натурального, и многих неофитов такая функция попросту пугает. Число e = 2,718281828 представляет собой константу, которая естественным образом возникает при описании процессов непрерывного роста. Как важно число Пи для геометрии, число e играет важную роль в моделировании временных процессов.

В какую степень нужно возвести число e, чтобы получить 10? Ответом был бы loge 10, но математики обозначают натуральный логарифм как ln, поэтому ответ будет записан как ln10. Тоже самое с выражениями loge 35 и loge 40, верная форма записи которых – ln34 и ln40.

Антилогарифм

Антилогарифм — это число, которому соответствует значение выбранного логарифма. Простыми словами, в выражении loga b антилогарифмом считается число ba. Для десятичного логарифма lga, антилогарифм равен 10a, а для натурального lna антилогарифм равняется ea. По сути, это тоже возведение в степень и обратная операция для логарифмирования.

Физический смысл логарифма

Нахождение степеней — чисто математическая задача, но для чего нужны логарифмы в реальной жизни? В начале развития идеи логарифмирования данный математический инструмент использовался для сокращения объемных вычислений. Великий физик и астроном Пьер-Симон Лаплас говорил, что «изобретение логарифмов сократило труд астронома и удвоило его жизнь». С развитием математического инструмента были созданы целые логарифмические таблицы, при помощи которых ученые могли оперировать огромными числами, а свойства функций позволяют преобразовать выражения, оперирующие иррациональным числами в целочисленные выражения. Также логарифмическая запись позволяет представить слишком маленькие и слишком большие числа в компактном виде.

Логарифмы нашли применение и в сфере изображения графических процессов. Если требуется нарисовать график функции, которая принимает значения 1, 10, 1 000 и 100 000, то маленькие значения будут невидны и визуально они сольются в точку около нуля. Для решения подобной проблемы используются десятичный логарифм, которой позволяет построить график функции, адекватно отображающий все ее значения.

Физический же смысл логарифмирования — это описание временных процессов и изменений. Так, логарифм по основанию 2 позволяет определить, сколько требуется удвоений начального значения для достижения определенного результата. Десятичная функция используется для поиска количества необходимых удесятирений, а натуральная представляет собой время, которое необходимо для достижения заданного уровня.

Наша программа представляет собой сборник из четырех онлайн-калькуляторов, которые позволяют вычислить логарифм по любому основанию, десятичную и натуральную логарифмическую функцию, а также десятичный антилогарифм. Для проведения вычислений вам потребуется ввести основание и число, или только число для десятичного и натурального логарифма.

Примеры из реальной жизни

Школьная задача

Как было сказано выше, иррациональные значения по типу log2 345 не требуют дополнительных преобразований, и такой ответ полностью удовлетворит учителя математики. Однако если логарифм вычисляется, вы обязаны представить его в виде целого числа. Пусть вы решили 5 примеров по алгебре, и вам требуется проверить результаты на возможность целочисленного представления. Давайте проверим их при помощи калькулятора логарифма по любому основанию:

  • log7 65 — иррациональное число;
  • log3 243 — целое число 5;
  • log5 95 — иррациональное;
  • log8 512 — целое число 3;
  • log2 2046 — иррациональное.

Таким образом, значения log3 243 и log8 512 вам потребуется переписать как 5 и 3 соответственно.

Потенцирование

Потенцирование — это нахождение антилогарифма числа. Наш калькулятор позволяет найти антилогарифмы по десятичному основанию, что по смыслу означает возведение десятки в степень n. Давайте вычислим антилогарифмы для следующих значений n:

  • для n = 1 antlog = 10;
  • для n = 1,5 antlog = 31,623;
  • для n = 2,71 antlog = 512,861.

Непрерывный рост

Натуральный логарифм позволяет описывать процессы непрерывного роста. Представим, что ВВП страны Кракожия увеличилось с 5,5 миллиардов долларов до 7,8 за 10 лет. Давайте определим ежегодный прирост ВВП в процентах при помощи калькулятора натурального логарифма. Для этого нам надо подсчитать натуральный логарифм ln(7,8/5,5), что равнозначно ln(1,418). Введем это значение в ячейку калькулятора и получим результат 0,882 или 88,2% за все время. Так как ВВП рос в течение 10 лет, то ежегодный его прирост составит 88,2 / 10 = 8,82%.

Поиск количества удесятирений

Допустим, за 30 лет количество персональных компьютеров увеличилось с 250 000 до 1 миллиарда. Сколько раз количество ПК увеличивалось в 10 раз за все это время? Для подсчета такого интересного параметра нам потребуется вычислить десятичный логарифм lg(1 000 000 000 / 250 000) или lg(4 000). Выберем калькулятор десятичного логарифма и посчитаем его значение lg(4 000) = 3,60. Получается, что с течением времени количество персональных компьютеров возрастало в 10 раз каждые 8 лет и 4 месяца.

Заключение

Несмотря на сложность логарифмов и нелюбовь детей к ним в школьные годы, этот математический инструмент находит широкое применение в науке и статистике. Используйте наш сборник онлайн-калькуляторов для решения школьных заданий, а также задач из разных научных сфер.

bbf.ru

Антилогарифм и его применение.

Антилогарифм числа — это просто число 10, возведенное в эту степень. Антилогарифм 0,09542 (определенный по таблице) равен 1,246, а антилогарифм 7 — это 107. При переходе от логарифма к антилогарифму сложение заменяется умножением. Таким образом, антилогарифм равен 1,246х107. Или в обычной, неэкспоненциальной форме 12 460 000.Если вы просто перемножите 6837 на 1822 в столбик, то получите 12 457 014. Однако не следует забывать, что логарифмы — это приближенные величины, так что и результат мы можем получить только с определенным приближением.

Чтобы разделить 6837 на 1822, надо вычесть логарифм второго числа из логарифма первого, или 3,83487 — 3,26055=0,57432. Антилогарифм этого числа равен 3,752. Это и есть искомый ответ. Если вы выполните деление в столбик, то получите более точное выражение: 3,75192. Но как мы уже знаем, логарифмы — это приближенные величины.

Возможно, такой метод расчета показался вам громоздким и неэффективным, ведь мало того, что мы получаем приближенный результат, но надо еще искать ответы в двух таблицах. Не проще ли произвести умножение в столбик? Однако при инженерных и научных расчетах часто достаточно той точности, которую дает метод логарифмов. В то же время часто приходится проводить многократные операции деления и умножения, и метод логарифмов оказывается просто незаменим. Предположим, надо решить такой пример: (194,768х0,045х19,22):(1,558х35,4).

Вам понадобится довольно много времени, чтобы провести все необходимые операции деления и умножения, а используя метод логарифмов, если вы хорошо освоили правила работы с логарифмическими таблицами, можно решить этот пример очень быстро. Нужно будет несколько раз заглянуть в таблицы и провести несколько операций сложения и вычитания.

Далее, если по условиям вашей задачи вам достаточно получить ответ с определенным приближением — а в инженерных и научных расчетах именно это и требуется, — метод логарифмов дает дополнительное преимущество, поскольку он значительно сокращает время, необходимое для проведения вычислений. Также он может использоваться в аналитических и статистических целях, что весьма необходимо в современном Мире. Ведь правильно задав направление своему бизнесу, спрогнозировав товар, на который будет спрос, можно быстро расти увеличивать обороты продукции.

Материалы по теме:

Поделиться с друзьями:

Загрузка...

matemonline.com

Антилогарифмы - Справочник химика 21

    По таблице антилогарифмов отыскивают число, соответствующее найденному логарифму  [c.169]

    Для вычисления пользуются таблицей четырехзначных логарифмов и антилогарифмов  [c.163]

    Вычисления следует проводить, пользуясь таблицами логарифмов и антилогарифмов .  [c.156]

    Чтобы определить отсюда концентрацию ионов водорода, нужно найти по данному логарифму число (антилогарифм). Если мы желаем воспользоваться таблицами логарифмов, то предварительно необходимо преобразовать наш логарифм так, чтобы только целочисленная часть его (характеристика) была отрицательной, а дробная (мантисса) — положительной. Для этого от характеристики отнимем, а к мантиссе прибавим единицу  [c.162]

    Решение. рН= - Ig (Н =3,8 lg(H + l=-3,8 -3,8= -4-f 0,2 (Н + I =антилогарифм ( —3,8) =антилогарифм 0,20-антилогарифм (—4) = = 1,6- 10 мольД . [c.145]

    По таблицам антилогарифмов находим значение этого числа и получим [c.17]

    Получение антилогарифмов. Процедура определения числа по заданному логарифму этого числа называется получением антилогарифма. Эта процедура обратна получению логарифма. Приведем ряд примеров  [c.487]

    В е эти вычисления нужно делать, пользуясь таблицами четырехзначных логарифмов и антилогарифмов, с точностью, отвечающей точности анализа (т. е. до четырех значащих цифр). Наоборот, вычисления объемов концентрированной соляной кислоты при приготовлении ее растворов являются приближенными, и потому все соответствующие величины целесообразно округлять. [c.299]

    Нахождение числа по его логарифму. Для этой цели служат таблицы антилогарифмов. Нахождение по ним числа, отвечающего данному логарифму, совершенно аналогично нахожде нню логарифмов по таблице логарифмов. Пусть, например, х = 2,6694. Чтобы найти X, не обращая внимания на характеристику, находим число, отвечающее данной мантиссе (6694). На пересечении рядов, отвечающих первым двум цифрам ее (66) и третьей цифре (9), помещено число 4667. Поправка на четвертую цифру (4)-равна 4. Следовательно, найденное по таблице числб составляет 4671. Чтобы получить искомую величину х, нужно, исходя из значения характеристики 2, поставить запятую. Поскольку эта характеристика отрицательная, X должен быть меньше нуля, и перед первой значащей цифрой данного числа должны стоять два нуля. Таким образом, получаем х=0,04671. Примеры  [c.237]

    В этом примере мы рассчитаем равновесие при общих давлениях 1, 10 и 100 атм и учтем влияние того обстоятельства, что газы не являются идеальными. В таблицах Россини можно найти значения логарифма равновесной константы образования — log ЛГ/ —для каждого компонента реакции. Сгруппировав их, как это делается обычно (см. уравнения (VII-1) п (VII-5), и взяв антилогарифм, получим константу равновесия реакции. Используя уравнение (VII-22), получим [c.376]

    Потенцирование полученного значения Ig Ка по таблицам антилогарифмов дает  [c.141]

    Находим X по таблице антилогарифмов J = 2,294. [c.253]

    Если значения V нанести на график в зависимости от значений, то получится прямая линия, отсекающая на оси ординат отрезок, антилогарифм которого пропорционален [c.468]

    Найдя затем по таблицам соответствующий антилогарифм, получаем  [c.162]

    Произведение 23 2,5 представляет собой антилогарифм числа 1,76, равный 58. Еще один пример величина отнощения 42/1,8 находится по разности логарифмов числителя и знаменателя [c.521]

    Для примера рассмотрим обработку результатов коррозионно-усталостных испытаний образцов диаметром рабочей части 5 мм из нормализованной стали 20 при чистом изгибе с вращением в 3 %-ном растворе ЫаС1 (рис, 12). В зависимости от базы испытания, состояния поверхности образцов графики коррозионной усталости в полулогарифмических координатах могут быть представлены в виде прямой или ломаной линии с одним, а реже с двумя перегибами. Тогда каждый прямолинейный участок необходимо подвергать обработке отдельно. Для стали 20 в полулогарифмических координатах четко выражены два прямолинейных участка, поэтому подвергаем обработке отдельно верхнюю и нижнюю ветви кривой. Исходные данные об уровне напряжений а и времени до разрушения N заносим в табл. 2 и 3. Через точку М (см. рис. 12) с координатами (антилогарифм среднеарифметического значения 1д /V) и V (среднеарифметическое значение а) проводят две прямые, рассчитанные по уравнениям (1) и (2) с использованием данных табл. 3 и 4 площадь между прямыми охватывает наиболее вероятное местоположение экспериментальных точек. Чем меньше разброс экспериментальных точек, тем меньше разница между коэффициентами Ь, и 2. Критерием разброса экспериментальных точек служит коэффициент корреляции г =b /Ь . При минимальном разбросе л ->1. Поскольку кооордина-ты точки перелома кривой точно установить трудно, то при построении кривой кор-розинной усталости отдельные ветви соединяют плавной линией. [c.33]

    Искомая величина равна антилогарифму числа 1,36, т.е. 23. Отметим, что точность проведенных здесь вычислений ограничена числом значащих цифр исходных численных величин и их логарифмов. Для большей точности следует пользоваться трехзначными, четырехзначными или пятизначными таблицами логарифмов. [c.521]

    Решение. Раствор с pH 4,30 имеет 1 [Н+] =—4,30, или 0,70—5. Антилогарифм 0,70 равен 5,0 и антилогарифм —5 равен 10 . Следовательно, концентрация иоков водорода в этом растворе равна 6,0X10 . [c.334]

chem21.info

Таблица логарифмов, формулы и примеры

Определения и таблица логарифмов

Иногда при расчетах необходимо знать значения логарифмов некоторых величин, но их нельзя вычислить точно. Было составлено ряд таблиц для упрощения вычислений.

Таблица натуральных логарифмов

Единицы

Десятки

0

1

2

3

4

5

6

7

8

9

0

0

0,6931

1,0986

1,3863

1,6094

1,7918

1,9459

2,0794

2,1972

1

2,3026

2,3979

2,4849

2,5649

2,6391

2,7081

2,7726

2,8332

2,8904

2,9444

2

2,9957

3,0445

3,091

3,1355

3,1781

3,2189

3,2581

3,2958

3,3322

3,3673

3

3,4012

3,434

3,4657

3,4965

3,5264

3,5553

3,5835

3,6109

3,6376

3,6636

4

3,6889

3,7136

3,7377

3,7612

3,7842

3,8067

3,8286

3,8501

3,8712

3,8918

5

3,912

3,9318

3,9512

3,9703

3,989

4,0073

4,0254

4,0431

4,0604

4,0775

6

4,0943

4,1109

4,1271

4,1431

4,1589

4,1744

4,1897

4,2047

4,2195

4,2341

7

4,2485

4,2627

4,2767

4,2905

4,3041

4,3175

4,3307

4,3438

4,3567

4,3694

8

4,382

4,3944

4,4067

4,4188

4,4308

4,4427

4,4543

4,4659

4,4773

4,4886

9

4,4998

4,5109

4,5218

4,5326

4,5433

4,5539

4,5643

4,5747

4,5850

4,5951

10

4,6052

4,6151

4,625

4,6347

4,6444

4,654

4,6634

4,6728

4,6821

4,6913

Таблица и формула перехода от натуральных логарифмов к десятичным

Если известен натуральный логарифм некоторого числа , то десятичный логарифм этого числа, согласно свойствам логарифма, будет равен

   

где .

Итак, десятичный логарифм числа равен произведению натурального логарифма этого же числа и числа .

Десятки

Единицы

0

1

2

3

4

5

6

7

8

9

0

0,0000

4,3430

8,6859

13,0288

17,3718

21,7147

26,0577

30,4006

34,7436

39,0865

1

0,4343

4,7772

9,1202

13,4631

17,8061

22,1490

26,4920

30,8349

35,1779

39,5208

2

0,8686

5,2115

9,5545

13,8974

18,2404

22,5833

26,9263

31,2692

35,6122

39,9551

3

1,3029

5,6458

9,9888

14,3317

18,6747

23,0176

27,3606

31,7035

36,0464

40,3894

4

1,7372

6,0801

10,4231

14,7660

19,1090

23,4519

27,7948

32,1378

36,4807

40,8237

5

2,1715

6,5144

10,8574

15,2003

19,5433

23,8862

28,2291

32,5721

36,9150

41,2580

6

2,6058

6,9487

11,2917

15,6346

19,9775

24,3205

28,6634

33,0064

37,3493

41,6923

7

3,0401

7,3830

11,7260

16,0689

20,4118

24,7548

29,0977

33,4407

37,7836

42,1266

8

3,4744

7,8173

12,1602

16,5032

20,8461

25,1891

29,5320

33,8750

38,2179

42,5609

9

3,9086

8.2516

12,5945

16,9375

21,2804

25,6234

29,9663

34,3093

38,6522

42,9952

Таблица и формула для перехода от десятичных логарифмов к натуральным.

Пусть известно значение десятичного логарифма некоторого положительного числа , тогда натуральный логарифм этого числа можно вычислить по формуле

   

то есть натуральный логарифм числа равен произведению десятичного логарифма этого числа и числа, обратного к числу :

   

Десятки

Единицы

0

1

2

3

4

5

6

7

8

9

0

0,0000

23,026

46,052

69,078

92,103

115,129

138,155

161,181

184,207

207,233

1

2,3026

25,328

48,354

71,380

94,406

117,431

140,458

163,484

186,509

209,535

2

4,6052

27,631

50,657

73,683

96,709

119,734

142,760

165,786

188,812

211,838

3

6,9078

29,934

52,959

75,985

99,011

122,037

145,062

166,089

191,115

214,140

4

9,2103

32,236

55,262

78,288

101,314

124,340

147,365

170,391

193,417

216,443

5

11,513

34,539

57,565

80,590

103,616

126,642

149,668

172,694

195,720

218,746

6

13,816

36,841

59,867

82,893

105,919

128,945

151,971

174,997

198,022

221,048

7

16,118

39,144

62,170

85,196

108,221

131,247

154,273

177,299

200,325

223,351

8

18,421

41,447

64,472

87,498

110,524

133,550

156,576

179,602

202,627

225,653

9

20,723

43,749

66,775

89,801

112,827

135,853

158,878

181,904

204,930

227,956

Понравился сайт? Расскажи друзьям!

ru.solverbook.com



О сайте

Онлайн-журнал "Автобайки" - первое на постсоветском пространстве издание, призванное осветить проблемы радовых автолюбителей с привлечение экспертов в области автомобилестроения, автоюристов, автомехаников. Вопросы и пожелания о работе сайта принимаются по адресу: Онлайн-журнал "Автобайки"