Радиус вписанной окружности в ромб. Свойства вписанной в ромб окружности


Вписанная в ромб окружность | Треугольники

Какими свойствами обладает вписанная в ромб окружность? Как найти её радиус?

Центр вписанной в ромб окружности — точка пересечения его диагоналей.

Радиус вписанной в ромб окружности можно найти по общей формуле

   

где S — площадь ромба, p — его полупериметр.

Так как полупериметр ромба равен p=2a, где a — сторона ромба, эту формулу можно записать как

   

С учётом формул для нахождения площади ромба:

   

где α — угол ромба (причем α может быть как острым, так и тупым).

   

где d1и d2 — диагонали ромба.

Таким образом, еще две формулы радиуса вписанной в ромб окружности:

   

   

Так как диаметр вписанной окружности равен высоте ромба, радиус равен половине высоты ромба:

   

Если известно, что точка касания вписанной окружности делит сторону ромба на отрезки, то радиус можно выразить через длины этих отрезков.

Так как диагонали ромба взаимно перпендикулярны и радиус, проведённый в точку касания, перпендикулярен стороне, то по свойству высоты прямоугольного треугольника из треугольника AOD имеем

   

Следовательно, радиус вписанной в ромб окружности есть среднее пропорциональное между отрезками, на которые делит сторону точка касания:

   

www.treugolniki.ru

Радиус вписанной окружности в ромб

Ромб – это параллелограмм, у которого все стороны равны. Следовательно, он наследует все свойства параллелограмма. А именно:

  • Диагонали ромба взаимно перпендикулярны.
  • Диагонали ромба являются биссектрисами его внутренних углов.

Окружность можно вписать в четырехугольник тогда и только тогда, когда суммы противоположных сторон равны.Следовательно, в любой ромб можно вписать окружность. Центр вписанной окружности совпадает с центром пересечения диагоналей ромба.Радиус вписанной окружности в ромб можно выразить несколькими способами

1 способ. Радиуса вписанной окружности в ромб через высоту

Высота ромба равна диаметру вписанной окружности. Это следует из свойства прямоугольника, который образуют диаметр вписанной окружности и высота ромба – у прямоугольника противолежащие стороны равны.

Следовательно формула радиуса вписанной окружности в ромб через высоту:

2 способ. Радиус вписанной окружности в ромб через диагонали

Площадь ромба можно выразить через радиус вписанной окружности, где Р— периметр ромба. Зная, что периметр это сумма всех сторон четырехугольника имеем P=4×а. Тогда Но площадь ромба  также равна половине произведения его диагоналей Прировняв правые части формул площади, имеем следующее равенство В результате получаем формулу, позволяющую вычислить радиус вписанной окружности в ромб чрез диагонали

Пример расчета радиуса окружности вписанной в ромб, если известны диагоналиНайти радиус окружности вписанной в ромб, если известно, что длина диагоналей 30 см и 40 см Пусть ABCD-ромб, тогда AC и BD его диагонали. AC=30 см, BD=40 см Пусть точка О – это центр вписанной в ромб ABCD окружности, тогда она будет также являться и точкой пересечения его диагоналей, делящих их пополам. т.к диагонали ромба пересекаются под прямым углом, то треугольник AOB прямоугольный. Тогда по теореме Пифагора, подставляем в формулу ранее полученные значенияAB = 25 см Применив ранее выведенную формулу для радиуса описанной окружности в ромб, получаем

3 способ. Радиус вписанной окружности в ромб через отрезки m и n

Точка F — точка касания окружности со стороной ромба, которая делит ее на отрезки AF и BF. Пусть AF=m, BF=n.Точка O – центр пересечения диагоналей ромба и центр вписанной в него окружности.Треугольник AOB – прямоугольный, так как диагонали ромба пересекаются под прямым углом., т.к. является радиусом, проведенным в точку касания окружности . Следовательно OF – высота треугольника AOB к гипотенузе. Тогда AF и BF – проекции катетов на гипотенузу.Высота в прямоугольном треугольнике, опущенная на гипотенузу есть среднее пропорциональное между проекциями катетов на гипотенузу.Формула радиуса вписанной окружности в ромб через отрезки равна корню квадратному из произведения этих отрезков, на которые делит сторону ромба точка касания окружности

Пример расчета радиуса окружности вписанной в ромб, если известны отрезки m и nНайдите радиус описанной окружности в ромб, если точка касания делит сторону ромба на 9 и 4 Пусть ABCD-ромб, тогда AC и BD его диагонали. Пусть точка O – это центр вписанной в ромб ABCD окружности. Пусть точка F — точка касания окружности со стороной ромбаAB. Тогда. AF=9, BF=4 Применив ранее полученную формулу, получаем

2mb.ru

Радиус вписанной окружности в ромб

1. Формулы радиуса вписанной окружности если известны: диагональ, стороны и угол

 

a - сторона ромба

D - большая диагональ

d - меньшая диагональ

α - острый угол

О - центр вписанной окружности

r - радиус вписанной окружности

 

Формула радиуса вписанной окружности в ромб через диагонали ( r ) :

 

 

Формула радиуса вписанной окружности в ромб через сторону и угол ( r ) :

 

Формула радиуса вписанной окружности в ромб через диагональ и угол ( r ) :

 

Формула радиуса вписанной окружности в ромб через диагональ и сторону ( r ) :

 

 

2. Радиус вписанной окружности ромба, равен половине его высоты

 

a - сторона ромба

h - высота

О - центр вписанной окружности

r - радиус вписанной окружности

 

Формула радиуса вписанной окружности в ромб ( r ) :

Подробности Автор: Administrator Опубликовано: 10 сентября 2011 Обновлено: 18 мая 2017

www-formula.ru

В ромб вписана окружность

Когда в условии задачи сказано, что в ромб вписана окружность, в ходе ее решения может быть использовано одно из следующих рассуждений.

Точка касания вписанной в ромб окружности делит его сторону на отрезки

В этом случае радиус ромба и его диагонали можно найти, используя соотношения в прямоугольном треугольнике.

Например, F — точка касания вписанной в ромб окружности — делит сторону AB на отрезки AF=m, FB=n. О — центр вписанной в ромб окружности — является точкой пересечения его диагоналей. Треугольник AOB — прямоугольный (так как диагонали ромба взаимно перпендикулярны).

   

   

— как радиус, проведенный в точку касания. Значит, OF — высота, проведенная к гипотенузе. Отсюда

   

   

   

Высота ромба через радиус вписанной окружности

   

Радиус вписанной в ромб окружности

Радиус вписанной окружности можно найти по формуле

   

S — площадь ромба, p — его полупериметр (p=2a, где a — сторона ромба).

Соответственно, площадь ромба через радиус вписанной в него окружности

   

Поскольку площадь ромба также равна

   

   

   

Площадь ромба через отрезки, на которые делит сторону ромба точка касания вписанной в него окружности, может быть найдена как

   

 

 

www.uznateshe.ru

Радиус вписанной окружности в ромб

Радиус вписанной окружности в ромбСуществует свойство окружности, которую можно вписать в четырехугольник. Для этого должно выполняться всего одно условие: сумма одной пары противоположных сторон должна быть равна сумме другой пары противоположных сторон.Поскольку для ромба это условие выполняется, то окружность можно вписать в любой ромб. Центр вписанной окружности и точка пересечения диагоналей ромба совпадают.Рассмотрим несколько способов вычисления радиуса вписанной в ромб окружности 1 вариант. Вычислить радиус вписанной окружности через высоту.Поскольку высота ромба и диаметр вписанной окружности равны, что следует из свойств прямоугольника, образованного диаметром вписанной окружности и высотой ромба.Запишем формулу радиуса вписанной окружности:

   

 2 вариант. Вычислить радиус вписанной окружности через диагонали.Рассмотрим формулу площади ромба через радиус вписанной окружности:

   

   

   

С другой стороны площадь ромба можно найти через диагонали:

   

Приравняем правые части записанных формул площадей и получим:

   

Из этого равенства выразим радиус:

   

 

ru.solverbook.com

Ромб. Площадь, периметр, радиус

В школьном курсе в геометрии среди основных задач значительное внимание уделено примерам вычисления площади и периметра ромба. Вспомним что ромб принадлежит к отдельному классу четырехугольников и выделяется среди них равными сторонами. Ромб также является частным случаем параллелограмма если у последнего все стороны равны AB=BC=CD=AD. Ниже приведен рисунок на котором изображен ромб.

Свойства ромба

Поскольку ромб занимает некоторую часть параллелограммов то свойства в них будут похожими.

  • Противоположные углы ромба как и параллелограмма равны.
  • Сумма углов ромба прилегающих к одной стороне равна 180°.
  • Диагонали ромба пересекаются под углом 90 градусов.
  • Диагонали ромба являются одновременно биссектрисами его углов.
  • Диагонали ромба в точке пересечения делятся пополам.

Признаки ромба

Все признаки ромба вытекают из его свойств и помогают различать его среди четырехугольников, прямоугольников, параллелограммов.

  • Параллелограмм у которого диагонали пересекаются под прямым углом является ромбом.
  • Параллелограмм у которого диагонали является биссектрисами является ромбом.
  • Параллелограмм с равными сторонами является ромбом.
  • Четырехугольник у которого все стороны равны является ромбом.
  • Четырехугольник у которого диагонали является биссектрисами углов и пересекаются под прямым углом является ромбом.
  • Параллелограмм с одинаковыми высотами является ромбом.

Формула периметра ромба

Периметр по определению равен сумме всех сторон. Поскольку в ромба все стороны равны то его периметр вычисляем по формуле

P=4a.

Периметр вычисляется в единицах длины.

Радиус окружности вписанной в ромб

Одними из распространенных задач при изучении ромба является нахождение радиуса или диаметра вписанной окружности. На рисунке изображенном ниже приведены одни из распространенных формул радиуса вписанной окружности в ромб.

Первая формула показывает что радиус окружности вписанной в ромб равен произведению диагоналей разделенному на сумму всех сторон (4а).

Другая формула показывает что радиус окружности вписанной в ромб равен половине высоты ромба

r=h/2.

Вторая формула на рисунке является модификацией первой и применяется при исчислении радиуса окружности вписанной в ромб когда известны диагонали ромба, то есть неизвестные стороны.

Третья формула радиуса вписанной окружности фактически находит половину высоты малого треугольника, который образуется пересечением диагоналей.

Среди менее популярных формул для вычисления радиуса окружности вписанной в ромб можно еще привести такиездесь D – диагональ ромба, alpha – угол который рассекает диагональ.

Если известна площадь (S) ромба и величина острого угла (alpha) то для вычисления радиуса вписанной окружности нужно найти квадратный корень из четверти произведения площади на синус острого угла:

Из приведенных формул Вы без проблем найдете радиус вписанной в ромб окружности, если в условиях примера будут необходимый набор данных.

Формула площади ромба

Формул для вычисления площади приведены на рисунке.

Простейшая выводится как сумма площадей двух треугольников на которые разделяет ромб его диагональ.

Вторая формула площади применяется к задачам в которых известны диагонали ромба. Тогда площадь ромба равна половине произведению диагоналей

Она достаточно проста для того чтобы запомнить, а также - для вычислений.

Третья формула площади имеет смысл когда известен угол между сторонами. Согласно ей площадь ромба равна произведению квадрата стороны на синус угла. Острый он или нет значения не имеет поскольку синус обоих углов принимает одинаковое значение.

Периметр ромба

Периметр ромба равен сумме всех его сторон. Учитывая то что они все равны периметр принимает значение

P=4a.

И в завершение запомните что периметр измеряется в единицах длины, а площадь в квадратных единицах. Теперь Вы знаете как найти площадь и периметр ромба, поэтому пользуйтесь приведенным формулам при решении задач.

Посмотреть материалы:

yukhym.com

В параллелограмм вписана окружность | Треугольники

Если в условии задачи сказано, что в параллелограмм вписана окружность, то что сразу можно сказать об этом параллелограмме?

Для этого надо вспомнить, когда в четырехугольник можно вписать окружность. Это можно сделать лишь в том случае, если суммы противолежащих сторон четырехугольника равны.

Это условие выполняется только для  тех параллелограммов, у которых все стороны равны, то есть только для ромба (и квадрата, как частного случая ромба).

Следовательно, если известно, что в параллелограмм можно вписать окружность, сразу можно сделать вывод, что все его стороны равны, и для него справедливы все свойства ромба. Если же дополнительно сказано, что хотя бы один из углов этого параллелограмма прямой, то такой параллелограмм — квадрат.

Радиус вписанной в ромб окружности можно найти по формуле

   

где S — площадь ромба, p — его полупериметр;

или как половину высоты ромба

   

Задачи.

1) В параллелограмм вписана окружность. Найти периметр параллелограмма, если одна из его сторон равна 10 см.

Решение:

Из всех параллелограммов вписать окружность можно только в ромб (и квадрат). У ромба все стороны равны.

Периметр ромба

   

Ответ: 40 см.

2) В параллелограмм вписана окружность. Найти её радиус, если высота параллелограмма равна 12 см.

Решение:

Из параллелограммов вписать окружность можно в ромб (и квадрат). Радиус вписанной в ромб (и квадрат) окружности равен половине его высоты:

   

Ответ: 6 см.

3) В параллелограмм вписана окружность. Найти её радиус, если диагонали параллелограмма равны 6 см и 8 см.

Решение:

Из всех параллелограммов окружность можно вписать в ромб (и квадрат. У квадрата диагонали равны, следовательно, в задаче речь идёт о ромбе).

Пусть ABCD — ромб, AC=6 см, BD=8 см.

Рассмотрим треугольник AOB.

По свойствам ромба, ∠AOB=90,

   

   

По теореме Пифагора 

   

   

Площадь ромба равна

   

   

полупериметр — p=2a=2∙AB=25=10 см.

Следовательно, радиус вписанной окружности равен

   

Ответ: 2,4 см.

www.treugolniki.ru



О сайте

Онлайн-журнал "Автобайки" - первое на постсоветском пространстве издание, призванное осветить проблемы радовых автолюбителей с привлечение экспертов в области автомобилестроения, автоюристов, автомехаников. Вопросы и пожелания о работе сайта принимаются по адресу: Онлайн-журнал "Автобайки"