Свободное падение. Ускорение свободного падения. Скорость падения тела с высоты формула

БЕСПЛАТНО ответим на Ваши вопросы
По лишению прав, ДТП, страховом возмещении, выезде на встречную полосу и пр. Ежедневно с 9.00 до 21.00
Москва и МО +7 (499) 938-51-97
С-Петербург и ЛО +7 (812) 467-32-86
Бесплатный звонок по России 8-800-350-23-69 доб.418

формулы расчетов скорости, высоты и времени падения

Свободное падение тела — это его равнопеременное движение, которое происходит под действием силы тяжести. В этот момент другие силы, которые могут воздействовать на тело либо отсутствуют, либо настолько малы, что их влияние не учитывается. Например, когда парашютист прыгает из самолета, первые несколько секунд после прыжка он падает в свободном состоянии. Этот короткий отрезок времени характеризуется ощущением невесомости, сходным с тедж.м, что испытывают космонавты на борту космического корабля.

История открытия явления

О свободном падении тела ученые узнали еще в Средневековье: Альберт Саксонский и Николай Орем изучали это явление, но некоторые их выводы были ошибочными. Например, они утверждали, что скорость падающего тяжелого предмета возрастает прямо пропорционально пройденному расстоянию. В 1545 году поправку этой ошибки сделал испанский ученый Д. Сото, установивший факт, что скорость падающего тела увеличивается пропорционально времени, которое проходит от начала падения этого предмета.

В 1590 г. итальянский физик Галилео Галилей сформулировал закон, который устанавливает четкую зависимость пройденного падающим предметом пути от времени. Также ученым было доказано, что при отсутствии воздушного сопротивления все предметы на Земле падают с одинаковым ускорением, хотя до его открытия было принято считать, что тяжелые предметы падают быстрее.

Была открыта новая величина — ускорение свободного падения, которое состоит из двух составляющих: гравитационного и центробежного ускорений. Обозначается ускорение свободного падения буквой g и имеет различное значение для разных точек земного шара: от 9,78 м/с2 (показатель для экватора) до 9,83 м/с2 (значение ускорения на полюсах). На точность показателей влияют долгота, широта, время суток и некоторые другие факторы.

Стандартное значение g принято считать равным 9,80665 м/с2. В физических расчетах, которые не требуют соблюдения высокой точности, значение ускорения принимают за 9,81 м/с2. Для облегчения расчетов допускается принимать значение g равным 10 м/с2.

Для того чтобы продемонстрировать, как предмет падает в соответствии с открытием Галилея, ученые устраивают такой опыт: в длинную стеклянную трубку помещают предметы с различной массой, из трубки выкачивают воздух. После этого трубку переворачивают, все предметы под действием силы тяжести падают одновременно на дно трубки, независимо от их массы.

Когда эти же предметы помещены в какую-либо среду, одновременно с силой тяжести на них действует сила сопротивления, поэтому предметы в зависимости от своей массы, формы и плотности будут падать в разное время.

Формулы для расчетов

Существуют формулы, с помощью которых можно рассчитывать различные показатели, связанные со свободным падением. В них используются такие условные обозначения:

  1. u — конечная скорость, с которой перемещается исследуемое тело, м/с;
  2. h — высота, с которой перемещается исследуемое тело, м;
  3. t — время перемещения исследуемого тела, с;
  4. g — ускорение (постоянная величина, равная 9,8 м/с2).

Формула для определения расстояния, пройденного падающим предметом при известной конечной скорости и времени падения: h = ut /2.

Формула для расчета расстояния, пройденного падающим предметом по постоянной величине g и времени: h = gt 2/2.

Формула для определения скорости падающего предмета в конце падения при известном времени падения: u = gt .

Формула для расчета скорости предмета в конце падения, если известна высота, с которой падает исследуемый предмет: u = √2 gh.

Интересные факты

Если не углубляться в научные знания, бытовое определение свободного перемещения подразумевает передвижение какого-либо тела в земной атмосфере, когда на него не воздействуют никакие посторонние факторы, кроме сопротивления окружающего воздуха и силы тяжести.

В различное время добровольцы соревнуются между собой, пытаясь установить личный рекорд. В 1962 г. испытатель-парашютист из СССР Евгений Андреев установил рекорд, который был занесен в Книгу рекордов Гиннеса: при прыжке с парашютом в свободном падении он преодолел расстояние в 24500 м, во время прыжка не был использован тормозной парашют.

В 1960 г. американец Д. Киттингер совершил парашютный прыжок с высоты 31 тыс. м, но с использованием парашютно-тормозной установки.

В 2005 г. была зафиксирована рекордная скорость при свободном падении — 553 км/ч, а через семь лет установлен новый рекорд — эта скорость была увеличена до 1342 км/ч. Этот рекорд принадлежит австрийскому парашютисту Феликсу Баумгартнеру, который известен во всем мире своими опасными трюками.

Видео

Посмотрите интересное и познавательное видео, которое расскажет вам о скорости падения тел.

liveposts.ru

Закон всемирного тяготения | EduNow.su

Как вы думаете, кто быстрее упадет: мяч или самосвал?  Дело в том, что на все БЕЗ ИСКЛЮЧЕНИЯ объекты действует сила притяжения. В нашем случае целесообразней рассматривать силу притяжения нашей планеты, нежели Сатурна, сила притяжения которого бесконечно мала. Так вот, есть формула, которая определяет силу гравитационного взаимодействия двух тел, однако задача упрощается в том случае, когда масса второго тела несоизмеримо мала. Итог: ускорение g (9.8м/с2), и время падения обоих тел можно вычислить по формуле t=sqrt(2h/g), где sqrt() - корень, h - высота, g - константа = 9.8 м/c2.Однако данная прогрессия хорошо работает до определенного времени, когда активно включается сопротивление воздуха (ему тоже свойственно трение) , взрывной рост скорости прекращается, что позволяет людям прыгать с парашютом, ведь если бы все было четко по формуле, то  скорость при приземлении была бы колоссальна.

Существует готовая формула времени падения тела (g=9,8):

Однако у читателя может возникнуть справедливый вопрос: "А с чего вы это взяли?" Именно поэтому ниже будет представлен полный вывод этой замечательной формулы.

Пояснения шагов: 1. На первом шаге берется стандартная формула вычисления пути при равноускоренном движении. Кстати, в формуле есть место начальной скорости v. Подставляя значение v - скорости, a - ускорения вы можете получить пройденный путь за любой отрезок времени равный t. 2. Поскольку мы считаем, что тело было сброшено, то первоначальная скорость будет равна нулю. 3. С помощью нехитрого преобразования мы получаем почти готовую формулу, в которой осталось только убрать квадрат от времени 4. Готово. Теперь приведем формулу к эталону, для этого заменим ускорение обозначенное "a" на g, т.к. на тело действует только ускорение свободного падения (сила притяжения земли) и букву "S" на h - это будет чисто эстетическим решением. 

Для этого мы обратимся к теории гравитации, согласно основной которой тела притягиваются к друг-другу с силой равной произведению их масс деленной на квадрат расстояния между ними и умноженную на гравитационную постоянную (6,6725×10-11).

В данной выше формуле содержится новый параметр "h", который обозначает расстояние от поверхности тела до объекта, поскольку расстояние от вас до земли, по сравнению с расстоянием до центра земли несоизмеримы, то можно не учитывать значение "h" для измерения ускорения свободного падения на поверхности земли.  Получается, что ручка притягивает вас к себе, но с очень маленькой силой, которая стремится к нулю. Дальнейшие вычисления может проделать каждый сам.

↑ Расскажите друзьям о статье

edunow.su

Свободное падение тел | ЭТО ФИЗИКА

Свободным падением тел называют падение тел на Землю в отсутствие сопротивления воздуха (в пустоте). В конце XVI века знаменитый итальянский ученый Г.Галилей опытным путем с доступной для того времени точностью установил, что в отсутствие сопротивления воздуха все тела падают на Землю равноускоренно, и что в данной точке Земли ускорение всех тел при падении одно и то же. До этого в течение почти двух тысяч лет, начиная с Аристотеля, в науке было принято считать, что тяжелые тела падают на Землю быстрее легких.

Ускорение, с которым падают на Землю тела, называется ускорением свободного падения. Вектор ускорения свободного падения обозначается символом  он направлен по вертикали вниз. В различных точках земного шара в зависимости от географической широты и высоты над уровнем моря числовое значение g оказывается неодинаковым, изменяясь примерно от 9,83 м/с2 на полюсах до 9,78 м/с2 на экваторе. На широте Москвы g = 9,81523 м/с2. Обычно, если в расчетах не требуется высокая точность, то числовое значение g у поверхности Земли принимают равным 9,8 м/с2 или даже 10 м/с2.

Простым примером свободного падения является падение тела с некоторой высоты h без начальной скорости. Свободное падение является прямолинейным движением с постоянным ускорением. Если направить координатную ось OY вертикально вверх, совместив начало координат с поверхностью Земли, то для анализа свободного падения без начальной скорости можно использовать формулу в 1.4, положив υ0 = 0, y0 = h, a = –g. Обратим внимание на то, что если тело при падении оказалось в точке с координатой y < h, то перемещение s тела равно s = y – h < 0. Эта величина отрицательна, так как тело при падении перемещалось навстречу выбранному положительному направлению оси OY. В результате получим:

Скорость отрицательна, так как вектор скорости направлен вниз.

Время падения tп тела на Землю найдется из условия y = 0:

Скорость тела в любой точке составляет:

В частности, при y = 0 скорость υп падения тела на Землю равна:

Пользуясь этими формулами, можно вычислить время падения тела с данной высоты, скорость падения тела в любой момент после начала падения и в любой точке его траектории и т. д.

Аналогичным образом решается задача о движении тела, брошенного вертикально вверх с некоторой начальной скоростью υ0. Если ось OY по-прежнему направлена вертикально вверх, а ее начало совмещено с точкой бросания, то в формулах равноускоренного прямолинейного движения следует положить: y0 = 0, υ0 > 0, a = –g. Это дает:

Через время υ0 / g скорость тела υ обращается в нуль, т. е. тело достигает высшей точки подъема. Зависимость координаты y от времени t выражается формулой

Тело возвращается на землю (y = 0) через время 2υ0 / g, следовательно, время подъема и время падения одинаковы. Во время падения на землю скорость тела равна –υ0, т. е. тело падает на землю с такой же по модулю скоростью, с какой оно было брошено вверх.

Максимальная высота подъема

 

Рисунок 1.5.1.

Графики скоростей для различных режимов движения тела с ускорением a = –g

На рис. 1.5.1 представлены графики скоростей для трех случаев движения тела с ускорением a = –g. График I соответствует случаю свободного падения тела без начальной скорости с некоторой высоты h. Падение происходило в течение времени tп = 1 с. Из формул для свободного падения легко получить: h = 5 м (все числа в этих примерах округлены, ускорение свободного падения принято равным 10 м/с2).

График II – случай движения тела, брошенного вертикально вверх с начальной скоростью υ0 = 10 м/с. Максимальная высота подъема h = 5 м. Тело возвращается на землю через время t = 2 с.

График III – продолжение графика I. Свободно падающее тело при ударе о землю отскакивает (мячик), и его скорость за очень короткое время меняет знак на противоположный. Дальнейшее движение тела не отличается от случая II.

Задача о свободном падении тел тесно связана с задачей о движении тела, брошенного под некоторым углом к горизонту. Для кинематического описания движения тела удобно одну из осей системы координат (ось OY) направить вертикально вверх, а другую (ось OX) – расположить горизонтально. Тогда движение тела по криволинейной траектории можно представить как сумму двух движений, протекающих независимо друг от друга – движения с ускорением свободного падения вдоль оси OY и равномерного прямолинейного движения вдоль оси OX. На рис. 1.5.2 изображен вектор начальной скорости  тела и его проекции на координатные оси.

Рисунок 1.5.2.

Движение тела, брошенного под углом  к горизонту. Разложение вектора  начальной скорости тела по координатным осям

Таким образом, для движения вдоль оси OX имеем следующие условия:

а для движения вдоль оси OY

 

Приведем здесь некоторые формулы, описывающие движение тела, брошенного под углом α к горизонту.

Время полета:

Дальность полета:

Максимальная высота подъема:

 

Движение тела, брошенного под углом к горизонту, происходит по параболической траектории. В реальных условиях такое движение может быть в значительной степени искажено из-за сопротивления воздуха, которое может во много раз уменьшить дальность полета тела.,

www.its-physics.org

Ускорение свободного падения, формулы и примеры

Для свободно падающих тел справедлив закон Галилея: все тела под действием земного притяжения падают на Землю с одинаковым ускорением.

Ускорение свободного падения обозначается символом . Вектор ускорения свободного падения всегда направлен вертикально вниз (в общем случае — к центру Земли).

Ускорение свободного падения зависит от географической широты местности и неодинаково в различных точках земного шара, изменяясь примерно от м/с на полюсах до м/с на экваторе. Ускорение свободного падения также зависит от высоты тела над поверхностью Земли: чем выше находится тело, тем меньше ускорение свободного падения. Однако, при расчетах, не требующих высокой точности, ускорение свободного падения у поверхности Земли принимают равным м/с .

Пример свободного падения и основные формулы

Простым примером свободного падения является падение тела без начальной скорости с некоторой высоты Направим координатную ось вертикально вверх и совместим начало координат с поверхностью Земли (рис.1). Пользуясь формулами для равноускоренного движения, определим основные характеристики свободного падения:

Рис.1. Падение тела с некоторой высоты без начальной скорости

Ускорение:

   

Скорость:

   

Координата:

   

Из условия , можно найти время падения тела на Землю:

   

Скорость тела в любой точке:

   

скорость тела в момент падения на Землю:

   

Следует также помнить о том, что свободное падение — это не всегда движение вниз. Тело, брошенное с некоторой начальной скоростью вертикально вверх, также будет двигаться равноускоренно с ускорением . При этом, так как векторы скорости и ускорения противоположно направлены, модуль скорости сначала будет уменьшаться до нуля. Потом тело, достигнув некоторой максимальной высоты, изменит направление движения и будет двигаться вниз.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Правда ли, что при падении с 5 этажа человек наберет такую же скорость, что и при падении с высоты 1000 метров?

Не совсем. Правильное утверждение должно звучать так: правда, что при падении с 47-го этажа человек набирает такую же скорость, как и при падении с 1 000, 10 000, 100 000 метров и т.д.

А теперь обо всем по порядку.

Итак, на падающее тело действует сила притяжения Земли и ускорение тела в следствие действия только этой силы равно ускорению свободного падения g. Но существует также сопротивление воздуха или сила вязкого трения газа (воздуха в нашем случае). Последняя сила пропорциональна скорости тела (или ее квадрату для больших скоростей), а значит для больших скоростей ей уже нельзя пренебречь. И так как сопротивление возрастает с ростом скорости, то ясно, что существует какая-то предельная скорость при которой сила трения уравновесит силу тяжести. А в этом случае, как мы знаем из первого закона Ньютона, тело будет двигаться равномерно и прямолинейно, то есть эта предельная скорость уже не изменится до самогó момента приземления.

Конечно на силу сопротивления воздуха влияет и парусность падающего тела, но это уже явление следующего порядка.

Для парашютиста, летящего плашмя, предельная скорость — 190 км/ч или 53 м/с. Давайте теперь сравним ее со скоростями приземления при падении с указанных в вопросе высот без учета сопротивления воздуха.

Кажется Илья забыл школьную физику:)

Найти конечную скорость падения в нашем случае очень просто. По закону сохранения энергии, кинетическая энергия равна потенциальной: Интересные факты о генетике Телегония — это 100% бред?Правда ли, что хорошие и плохие качества по большей части передаются от родителей к ребенку генетически? Или это миф?Существует ли национальность с позиции генетики?Задайте вопрос и получите скидку до 70% на генетический тест!

mv^2/2 = mgh,

где m — это масса тела (она сокращается и не важна), v — искомая скорость, h — высота падения. Отсюда сразу получаем выражение для скорости v:

v = sqrt(2gh),

где sqrt — квадратный корень.

Значит при падении с 5-го этажа (15 метров) конечная скорость равна примерно 17 м/c. А для 1000 м ответ — 141 м/c. Сравнивая их с предельной скорость падения, мы видим, что в первом случае скорость меньше, а во втором — больше. Это значит, что для 15 метров можно не делать поправки на вязкое трение и считать, что конечная скорость примерно такая и есть — 17 м/c. А при падении с 1000 метров, уже нельзя не учитывать сопротивление воздуха, и скорость приземления в этом случае будет равна предельной скорости — 53 м/c.

Так что ответ на ваш вопрос — нет, не правда. Но давайте теперь, ради интереса, оценим, начиная с какого значения высоты, конечная скорость перестает меняться. Для этого из самой первой формулы надо выразить h и подставить в нее значение предельной скорости:

h = v^2/(2g).

Получаем примерно 140 метров, а это и есть 47-ой этаж из начала моего ответа.

Напоминаю, что это примерная оценка и только для случая падения человека плашмя. Для падения "солдатиком" предельная скорость порядка 240 км/ч. Вы можете проделать все те же вычисления для этого случая.

thequestion.ru

Ускорение свободного падения, формулы. Почему тела в вакууме падают одинаково

Тестирование онлайн

Свободное падение. Ускорение

Свободным падение будем называть движение предметов вертикально вниз или вертикально вверх. Это равноускоренное движение, но особый его вид. Для этого движения справедливы все формулы и законы равноускоренного движения.

Если тело летит вертикально вниз, то оно ускоряется, в этом случае вектор скорости (направлен вертикально вниз) совпадает с вектором ускорения. Если тело летит вертикально вверх, то оно замедляется, в этом случае вектор скорости (направлен вверх) не совпадает с направлением ускорения. Вектор ускорения при свободном падении всегда направлен вертикально вниз.

Ускорение при свободном падении тел является постоянной величиной.Это означает какое бы тело не летело вверх или вниз, его скорость будет изменяться одинаково. НО с одной оговоркой, если силой сопротивления воздуха можно пренебречь.

Ускорение свободного падения принято обозначать буквой, отличной от ускорения. Но ускорение свободного падения и ускорение это одна и та же физическая величина и имеют они одинаковый физический смысл. Участвуют одинаково в формулах для равноускоренного движения.

Знак "+" в формулах пишем, когда тело летит вниз (ускоряется), знак "-" - когда тело летит вверх (замедляется)

Всем известно из школьных учебников физики, что в вакууме камушек и перышко летят одинаково. Но мало кто понимает, почему же в вакууме тела разной массы приземляются одновременно. Как ни крути, будь они в вакууме или в воздухе масса у них разная. Ответ прост. Сила, которая заставляет тела падать (сила тяжести), вызываемая гравитационным полем Земли у этих тел разная. У камня она больше (так как у камня больше масса), у перышка она меньше. Но здесь нет зависимости: чем больше сила, тем больше ускорение! Сравним, действуем с одинаковой силой на тяжелый шкаф и легкую тумбочку. Под действием этой силы тумбочка будет перемещаться быстрее. А для того, чтобы шкаф и тумбочка двигались одинаково, на шкаф необходимо воздействовать сильнее, чем на тумбочку. То же самое проделывает Земля. Более тяжелые тела она притягивает с большей силой, чем легкие. И эти силы так распределяются между массами, что все они в результате падают в вакууме одновременно, независимо от массы.

Отдельно рассмотрим вопрос о возникающем сопротивлении воздуха. Возьмем два одинаковых листа бумаги. Один из них скомкаем и одновременно отпустим из рук. Скомканный лист упадет на землю раньше. Здесь разное время падения не связано с массой тела и силой тяжести, а обусловлено сопротивлением воздуха.

Рассмотрим падение тела с некоторой высоты h без начальной скорости. Если координатную ось ОУ направить вверх, совместив начало координат с поверхностью Земли, получим основные характеристики этого движения.

Тело, брошенное вертикально вверх, движется равноускоренно с ускорением свободного падения. В этом случае векторы скорости и ускорения направлены в противоположные стороны, а модуль скорости с течением времени уменьшается.

ВАЖНО! Так как подъем тела до максимальной высоты и последующее падение до уровня земли абсолютно симметричные движения (с одним и тем же ускорением, просто одно замедленное, а другое -- ускоренное), то скорость, с которой приземлится тело, будет равна скорости, с которой его подбросили. При этом время подъема тела до максимальной высоты будет равно времени падения тела с этой высоты до уровня земли. Таким образом, все время полета составит двойное время подъема или падения. Скорость тела на одном и том же уровне при подъеме и при падении так же будет одинаковой.

Главное запомнить

1) Направление ускорения при свободном падении тела;2) Численное значение ускорения свободного падения;3) Формулы

Вывести формулу для определения времени падения тела с некоторой высоты h без начальной скорости.

Вывести формулу для определения времени подъема тела до максимальной высоты, брошенного с начальной скоростью v0

Вывести формулу для определения максимальной высоты подъема тела, брошенного вертикально вверх с начальной скоростью v0

fizmat.by

Свободное падение тела V=0

 

1. Формулы скорости, высоты, времени

 

h - раcстояние пройденное телом за время t

Vo - начальная скорость тела

V - конечная скорость тела

t - время падения за которое тело пролетело расстояние h

g - ускорение свободного падения

 

Формула конечной скорости тела (V ):

 

Формула расстояния, которое пролетело тело при падении (h ):

 

Формула времени падения тела (t ):

 

 

2. Формулы координаты тела, если направление оси OY совпадает с направлением скорости V

 

h - раcстояние пройденное телом за время t

Vo - начальная скорость тела

V - конечная скорость тела

t - время падения за которое тело пролетело расстояние h

g - ускорение свободного падения

Yo , Yк - начальная и конечная координаты тела на оси OY

 

 

Формулы конечной координаты тела (Yк ):

 

 

3. Формулы координаты тела, если направление оси OY не совпадает с направлением скорости V

 

h - раcстояние пройденное телом за время t

Vo - начальная скорость тела

V - конечная скорость тела

t - время падения за которое тело пролетело расстояние h

g - ускорение свободного падения

Yo , Yк - начальная и конечная координаты тела на оси OY

 

 

Формулы конечной координаты тела (Yк ):

zdesformula.ru



О сайте

Онлайн-журнал "Автобайки" - первое на постсоветском пространстве издание, призванное осветить проблемы радовых автолюбителей с привлечение экспертов в области автомобилестроения, автоюристов, автомехаников. Вопросы и пожелания о работе сайта принимаются по адресу: Онлайн-журнал "Автобайки"