Большая Энциклопедия Нефти и Газа. Молекулы в химии это


Молекула

Молекула (франц. molecule, от лат. moles — масса) — это наименьшая способная к самостоятельному существованию частица вещества, обладающая его химическими свойствами.

Учение о строении и свойствах молекул приобрело исключительный интерес для познания субмикроскопической структуры клеток и тканей, а также механизма биологических процессов на молекулярном уровне. Большие успехи в изучении структуры молекул и, в частности, молекул таких биополимеров, как белки и нуклеиновые кислоты, показали, что важнейшие функции этих веществ в организмах осуществляются на уровне отдельных молекул и поэтому должны исследоваться как молекулярные явления. Установлено, например, что такие функции белков, как ферментативная, структурная, сократительная, иммунная, транспортная (обратимое связывание и перенос жизненно необходимых веществ) разыгрываются на молекулярном уровне и непосредственно определяются структурой и свойствами молекул этих веществ. Наследственность и изменчивость организмов связаны с особой структурой и свойствами молекул нуклеиновых кислот, в которых зафиксирована вся генетическая информация, необходимая для синтеза белков организма. Небольшие отклонения в структуре или составе молекул ряда биологически важных веществ или изменения в молекулярном механизме некоторых обменных процессов являются причиной возникновения ряда заболеваний (например, серповидноклеточная анемия, наследственная галактоземия, сахарный диабет и др.), называемых молекулярными болезнями.

Молекула каждого вещества состоит из определенного числа атомов (см.) одного химического элемента (простое вещество) или различных элементов (сложное вещество), объединенных посредством химических (валентных) связей. Состав молекулы выражают химической формулой, в которой знаки элементов указывают вид атомов, образующих молекулу, а числа, стоящие справа внизу, показывают, сколько атомов каждого элемента входит в состав молекулы. Так, из химической формулы глюкозы С6h22O6 следует, что молекула глюкозы состоит из 6 атомов углерода, 12 атомов водорода и 6 атомов кислорода. Молекулы инертных газов и паров некоторых металлов одноатомны. Это самые простые молекулы. Наиболее сложными являются молекулы белков (см.), нуклеиновых кислот (см.) и других биополимеров, состоящие из многих тысяч атомов.

Для нахождения химической формулы молекулы необходимо определить приблизительный молекулярный вес (см.) исследуемого вещества и простейшую (эмпирическую) формулу его молекулы. Последнюю выводят из процентного состава данного вещества и атомных весов (см.) химических элементов, входящих в состав этого вещества. Так, например, химическим анализом установлено, что бензол состоит из 92,26% углерода и 7,74% водорода. Отсюда следует, что отношение числа атомов углерода к числу атомов водорода в молекуле бензола равно: где 12,011 и 1,008 — атомные веса углерода и водорода соответственно. Следовательно, простейшая формула бензола должна быть СН. Сопоставляя простейшую формулу бензола с его приблизительным молекулярным весом (78,1), найденным опытным путем, определяют его действительную, или истинную, формулу С6Н6.

Размеры молекул выражают в А. Так например, диаметр молекулы воды, предполагая, что она имеет сферическую форму, составляет 3,8 А. Молекулы высокомолекулярных веществ значительно больше, например линейные размеры больших и малых осей палочковидных молекул фибриногена быка равны 700 и 40 А, а вируса табачной мозаики — 2800 и 152 А соответственно. Мерой относительной массы  молекулы является молекулярный вес (см.), величина которого колеблется от нескольких единиц до миллионов.

Последовательность, в которой атомы связаны в молекуле (химическое строение молекул по А. М. Бутлерову), изображают так называемыми структурными формулами. Например, химическое строение уксусной кислоты С2Н4O2 представляют следующей структурной формулой:где каждая линия обозначает единицу валентности (см.), число линий, подходящих к атому, равно его валентности в данном соединении.

Химическое строение молекулы, находимое на основании определения молекулярного веса, химического состава и изучения химических свойств исследуемого вещества и окончательно подтверждаемое его синтезом из веществ, химическое строение которых известно, является важным фактором, определяющим свойства вещества, в частности его фармакологическое действие, токсичность и биологические функции. Различие в свойствах изомеров (см. Изомерия) является примером зависимости свойств веществ от химического строения их молекул. Атомный состав молекул изомеров одинаков, так, например, диметиловый эфир и этиловый спирт, будучи изомерами, имеют одинаковые химические формулы С2Н6O, однако структурные формулы их различны:чем и объясняются их различные свойства.

Способность атома образовывать то или иное число химических связей с другими атомами в молекулах называют валентностью данного атома. При образовании химической (валентной) связи происходит перегруппировка внешних (валентных) электронов взаимодействующих атомов, в результате которой внешние электронные оболочки атомов в молекуле приобретают устойчивую структуру, свойственную атомам инертных газов (см.) и состоящую обычно из восьми электронов (электронный октет). В зависимости от способа перегруппировки валентных электронов различают несколько основных типов химических связей.

Ионная (электровалентная) связь возникает между атомами элементов, сильно различающихся по химическим свойствам, например между атомами щелочных металлов и атомами галогенов. При этом атом металла отдает электрон атому галогена (рис. 1).

Рис. 1. Образование молекулы хлористого натрия.

Атом, отдающий электрон, становится положительно заряженным ионом. Атом, принимающий электрон, становится отрицательно заряженным ионом. Возникающие таким путем противоположно заряженные ионы взаимно притягиваются, образуя молекулу. Молекулы и соединения с ионными связями (например, соли и окислы металлов первой и второй групп периодической системы элементов) называются гетерополярными. Ионная связь характеризуется большой прочностью (энергия связи), т. е. работой, необходимой для разрыва молекулы на отдельные ионы.

Ковалентная (атомная) связь возникает при взаимодействии одинаковых или близких по свойствам атомов. При этом каждый из соединяющихся атомов отдает по одному или по нескольку валентных электронов на образование пары (или нескольких пар электронов), которая становится общей для обоих атомов. Обобщенная пара электронов, охватывая в своем движении ядра соединяющихся атомов, удерживает их один возле другого. К молекулам с ковалентной связью относятся молекулы простых газов, окислов и водородных соединений не металлов и многих органических соединений:Точками обозначены электроны, находящиеся на внешних электронных оболочках атомов, химическими знаками — ядра атомов со всеми электронными оболочками, кроме внешних. Пара электронов, связывающих атомы, соответствует валентной черте в обычных структурных формулах.

Молекулы, в которых электрические центры тяжести отрицательных (электроны) и положительных (ядра атомов) зарядов совпадают, называют гомеополярными. К ним относятся, например, молекулы простых газов, углеводородов. Если электрические центры тяжести отрицательных и положительных зарядов в молекулах не совпадают, молекулы называют полярными (например, молекулы воды, аммиака, галогеноводородов, спиртов, кетонов, альдегидов, эфиров). Полярная молекула ведет себя как диполь, т. е. система из двух электрических зарядов е+ и е- , одинаковых по величине, но противоположных по знаку, расположенных на пекотором расстоянии h один от другого (рис. 2).

Рис. 2. Схема диполя.

Произведение e·h=μ называют дипольным моментом молекулы. Последний является мерой полярности молекулы. Вещества, состоящие из полярных молекул, имеют более высокие температуру кипения, теплоемкость, теплоту парообразования и поверхностное натяжение, чем вещества, состоящие из гомеополярных молекул. Взаимодействие между полярными молекулами является одной из причин ассоциации молекул в жидкостях, а взаимодействие полярных молекул растворителя с полярными молекулами или ионами растворенного вещества — сольватации последних. Скорость диффузии полярных молекул через мембрану клеток меньше таковой для гомеополярных молекул.

Координационная (семиполярная, донорно-акцепторная) связь — это разновидность ковалентной связи, возникает между атомами, входящими в состав разных молекул, у одного из которых имеется неподеленная пара электронов, а у другого не хватает двух электронов для образования устойчивой внешней электронной оболочки. Такого рода связи характерны для комплексных соединений. Так, например, соединение молекулы аммиака Nh4 с молекулой фтористого бора BF3 в комплексную молекулу аммиаката фтористого бора осуществляется неподеленной парой электронов азота

Атом азота служит донором, атом бора акцептором электронной пары.

Водородная связь осуществляется между атомом водорода, ковалентно связанным с атомом F, О или N, и атомами F, О или N, находящимися в других молекулах. Прочность водородной связи невелика (5—10 ккал/моль), однако достаточна для образования ассоциаций молекул в жидкостях и растворах. В воде, например, такие ассоциации имеют следующее строение (водородные связи обозначены пунктиром):

Водородные связи возникают не только между молекулами, но и между атомами внутри одной и той же молекулы; это так называемые внутримолекулярные водородные связи (водородные мостики). Примером такой связи может служить водородная связь между атомом водорода и атомом кислорода в молекуле o-метилсалицилата:

Вследствие наличия этой связи свойства o-метилсалицилата резко отличаются от свойств m- и n-изомеров. Наличие водородных мостиков в молекулах нуклеиновых кислот, белков и других полимеров во многом определяет лабильность этих молекул. Водородные связи играют значительную роль в субмикроскопической структуре протоплазмы.

При помощи рентгено-, электроно-, нейтронографии, молекулярной спектроскопии и ядерного магнитного резонанса удалось установить пространственное расположение отдельных атомов в молекуле, т. е. геометрическую конфигурацию молекул ряда веществ, в том числе молекул биологически важных веществ.

Определение пространственной конфигурации молекул слагается из определения так называемые остова молекулы, т. е. пространственного расположения ядер образующих ее атомов, и распределения электронов в пределах данной молекулы.

Остов молекулы находят на основании данных о длине связи и величине валентных углов, определяемых с помощью указанных выше методов. Длина связи представляет собой расстояние между центрами двух атомов в молекуле, связанных друг с другом ковалентной связью. Меньший по величине угол, образуемый прямыми, соединяющими центры двух атомов А1 и А2 с центром третьего атома А3 в данной молекуле, называют валентным углом. Остов молекулы не является абсолютно жестким. Например, в молекулах органических соединений атомы углерода могут вращаться около ординарных (простых) связей, при этом меняется взаимное положение ядер, но остаются постоянными последовательность соединения атомов в молекуле, длина связей и валентные углы. Такие различные формы молекул, возникающие в результате поворота атома углерода вокруг ординарной связи, называют конформациями. Различные конформации одной и той же молекулы легко и обратимо переходят друг в друга, чем объясняются отсутствие изомеров вращения и переход молекул в форму, наиболее соответствующую для протекания той или иной реакции.

Распределение электронов в молекулах находят главным образом с помощью теоретических расчетов, в основе которых лежат два основных принципа квантовой химии. Первый из них утверждает, что электроны в атомах и молекулы могут находиться лишь на дискретных и совершенно определенных энергетических уровнях. Согласно второму принципу электроны в атомах и молекулы нельзя рассматривать как точечные частицы, положение и скорость которых в молекуле (или атоме) можно точно определить для каждого момента времени. В действительности, как учит квантовая механика, можно определить лишь вероятность нахождения электрона в некоторых областях пространства в данный момент времени. Поэтому можно представить, что заряд электрона как бы «размазан» в определенной области пространства в виде электронного облака, распределение которого в пространстве определяется соответствующей математической функцией (называемой волновой функцией электрона или его молекулярной орбиталью (или атомной орбиталью, если его распределение определяют в атоме).

Выло показано, что не все электроны в молекуле одинаково существенны для ее химических свойств. Так, например, в молекуле с большим числом двойных связей, к которым относится подавляющее большинство соединений, играющих доминирующую роль в процессах жизнедеятельности, электроны можно разделить на два типа. К первому типу относятся σ-электроны, участвующие в образовании ординарных связей, ко второму — п-электроны, участвующие в образовании двойных связей. Первые образуют жесткий скелет молекулы и локализованы попарно между соседними атомами. Вторые образуют значительно более расплывчатое облако, охватывающее всю периферию молекулы. В таких молекулах все основные их свойства обусловлены п-электронами, которые более лабильны сравнительно с σ-электронами и поэтому с большей легкостью могут участвовать в различного рода процессах.

www.medical-enc.ru

Что такое молекулярная химия

РЕШЕНИЕ

Раздел химии, изучающий молекулы

Молекула (новолат. molecula, уменьшительное от лат. moles — масса, наименьшая частица вещества, облащая его химическими свойствами. Молекула состоит из атомов, точнее — из атомных ядер, окружающих их внутренних электронов и внешних валентных электронов, образующих химические связи (см. Валентность. Внутренние электроны атомов обычно не участвуют в образовании химических связей. Состав и строение молекул данного вещества не зависят от способа его получения. В случае одноатомных молекул (например, инертных газов понятия молекулы и атома совпат. Впервые понятие о молекулах было введено в химии в связи с необходимостью отличать молекулу как наименьшее количество вещества, вступающее в химические реакции, от атома как наименьшего количества данного элемента, входящего в состав молекулы (Международный конгресс в Карлсруэ, 1860). Основные закономерности строения молекул были установлены в результате исследования химических реакций, анализа и синтеза химических соединений, а также благодаря применению ряда физических методов. Атомы объединяются в молекулы в большинстве случаев химическими связями. Как правило, такая связь создаётся одной, двумя или тремя парами электронов, которыми владеют сообща два атома. Молекула может содержать положительно и отрицательно заряженные атомы, т. Е. Ионы; в этом случае реализуются электростатические взаимодействия. Помимо указанных, в молекулах существуют и более слабые взаимодействия между атомами. Между валентно не связанными атомами действуют силы отталкивания. Состав молекул выражают формулами химическими. Эмпирическая формула (например, С2Н6О для этилового спирта устанавливается на основании атомного соотношения содержащихся в веществе элементов, определяемого химическим анализом, и молекулярной массы. Развитие учения о структуре молекул неразрывно связано с успехами прежде всего органической химии. Теория строения органических соединений, созданная в 60-х гг. 19 в. Трудами А. М. Бутлерова, Ф. А. Кекуле, А. С. Купера и др. Позволила представить строение молекул структурными формулами или формулами строения, выражающими последовательность валентных химических связей в молекулах. При одной и той же эмпирической формуле могут существовать молекулы разного строения, обладающие различными свойствами (явление изомерии. Таковы, например, этиловый спирт С5Н5ОН и диметиловый эфир (СН3)2О. Структурные формулы этих соединений разнятся: В некоторых случаях изомерные молекулы быстро превращаются одна в другую и между ними устанавливается динамическое равновесие (см. Таутомерия. В дальнейшем Я. Х. Вант-Гофф и независимо французский химик А. Ж. Ле Бель пришли к пониманию пространственного расположения атомов в молекуле и к объяснению явления стереоизомерии. А. Вернер (1893) распространил общие идеи теории строения на неорганические комплексные соединения. К началу 20 в. Химия располагала подробной теорией строения молекул, исходящей из изучения только их химических свойств. Замечательно, что прямые физические методы исследования, развитые позднее, в подавляющем большинстве случаев полностью подтвердили структурные формулы химии, установленные путём исследования макроскопических количеств вещества, а не отдельных молекул. В физике понятие о молекулах оказалось необходимым для объяснения свойств газов, жидкостей и твёрдых тел. Прямое экспериментальное доказательство существования молекул впервые было получено при изучении броуновского движения

funnychemistry.ru

Химия - молекула - Большая Энциклопедия Нефти и Газа, статья, страница 1

Химия - молекула

Cтраница 1

Химия молекул, таких, как С2Н2, N2h3 и Н202, определяется орбиталями, образующимися при комбинации рх - и ру - А. В линейном ацетилене эти орбитали порождают заполненные тсв - и свободные icg - орбитали ( гл. Молекула, естественно, имеет аксиальную симметрию.  [1]

Химия молекулы окиси углерода частично может быть хорошо объяснена этой формой, эквивалент которой с точки зрения теории молекулярных орбит здесь не рассматривается. В этой структуре углерод имеет изолированную пару электронов и одну незаполненную орбиту, так как ядро углерода окружено лишь секстетом электронов вместо обычного октета. Исходя из этих соображений, можно ожидать, что окись углерода способна взаимодействовать также с нуклео-фильными группами, например основаниями, которые могут явиться источником электронов для заполнения октета. Действительно, подобные реакции окиси углерода известны; некоторые их них также будут рассмотрены ниже.  [2]

Химией молекул продолжает оставаться современная органическая химия. Однако для неорганических соединений молекулярная форма существования вещества характерна лишь для газо - и парообразного состояния.  [3]

Химией молекул продолжает оставаться современная органическая химия, а большинство неорганических веществ не имеют молекулярной структуры. В последнем случае макротела состоят либо из атомов одного и того же химического элемента, либо из атомов разных элементов. Признание немолекулярной формы существования твердого вещества приводит к необходимости пересмотра некоторых положений химической атомистики, модернизации основных законов и понятий, справедливых для пневматической ( газовой) химии.  [4]

В химии молекул различают два осн.  [5]

Как и в химии молекул, в ядерной химии возможно протекание экзотермических и эндотермических реакций. Определение величины и знака теплового эффекта реакций может быть проведено при помощи закона эквивалентности массы и энергии.  [6]

Со времени опубликования моего предложения химия полых молекул не продвинулась сколько-нибудь заметно.  [7]

Теория групп применяется здесь гораздо шире, чем в химии молекул. В то же время возможность вывести закономерности спектра масс частиц из фундаментальных принципов, скажем из геометродинамики, здесь значительно более проблематична, чем возможность рассчитать энергию связи молекулы с помощью уравнения Шредин-гера.  [8]

Такое стремление распространить идеи и теории, выросшие в недрах органической химии ( химии молекул), на область неорганической химии оказалось, как это нам теперь ясно, неправомерным главным образом потому, что неорганические соединения - это, как правило, немолекулярные системы. В таких же системах преобладают не ковалентные, а ионные связи. Отличительная же особенность комплексных соединений состоит в том, что они представляют собою соединения молекул, а не атомов.  [9]

Сначала речь шла только о козфициентах, которые, впрочем, часто находили на основании анализа кристаллических структурных объединений и переносили в молекулярную химию, несмотря на отсутствие материала по отношению между химией молекул и кристаллохимией. Для соединении определенных классов эти соотношения настолько просты, что позволяют заранее приписывать частицам некоторые валентности, из которых можно вывести фактические коэфициенты. Нельзя упускать из вида, что эта закономерность ( которая вследствие многочисленных затруднений не может считаться чем-то само собой подразумевающимся для химических соединений вообще) так быстро получила признание лишь по геохимической причине. Кислород является важнейшим элементом внешней литосферы, и именно на основании отношений между числами атомов кислорода и других элементов в кислородных соединениях было выведено правило, что у электронейтральных объединений невозможны любые стехиометрические соотношения.  [10]

Сначала речь шла только о коэфициентах, которые, впрочем, часто находили на основании анализа кристаллических структурных объединений и переносили в молекулярную химию, несмотря на отсутствие материала по отношению между химией молекул и кристаллохимией. В настоящее время мы можем считать, что в электронейтральных атомных объединениях известные виды атомов в нормальных условиях стоят в простых стехиометрических отношениях к другим. Для соединений определенных классов эти соотношения настолько просты, что позволяют заранее приписывать частицам некоторые валентности, из которых можно вывести фактические коэфициенты. Нельзя упускать из вида, что эта закономерность ( которая вследствие многочисленных затруднений не может считаться чем-то само собой подразумевающимся для химических соединений вообще) так быстро получила признание лишь по геохимической причине. Кислород является важнейшим элементом внешней литосферы, и именно на основании отношений между числами атомов кислорода и других элементов в кислородных соединениях было выведено правило, что у электронейтральных объединений невозможны любые стехиометрические соотношения.  [11]

Проявления электронно-колебательных ( или, короче, виброн-ных) взаимодействий в многоатомных системах, в литературе объединяемые под общим названием эффекта Яна - Теллера, образуют в настоящее время новое быстро развивающееся направление в физике и химии молекул и кристаллов.  [12]

Легко - видеть, что между реакциями I и II существуют принципиальные различия. Реакция I представляют собой химию молекул; в активации их реагентов участвуют только энергетические факторы. Реакции II предсталвяют собой всю химию, изменение молекул в которой осуществляется преимущественно при участии бертоллидных систем. Направление и скорость реакций I определяются всецело химическим строением реагирующих молекул. Направление же и скорость реакций II обусловливаются как химическим строением реагирующих молекул, так и химической организацией катализирующей системы.  [13]

Поскольку для образования кольца, замкнутого водородными связями, необходимо возбужденное состояние, по-видимому, нет смысла детально исследовать влияние различных групп заместителей на процесс циклизации, используя данные по обычным реакциям органической химии. Можно сказать, что фотохимия занимается химией молекул в возбужденном, а не в основном состоянии.  [14]

Я хотел кратко остановиться на вопросе о реакционной способности молекул в триплетном состоянии. Вопрос этот, вообще говоря, очень большой, поскольку химия молекул в триплетном состоянии представляет собой самостоятельную область. Я остановлюсь только на качественной характеристике энергии активации реакции, в которой участвуют молекулы, находящиеся в триплетном состоянии. Чем отличается такая молекула от радикала. Простейшим примером является молекула О2, для которой триплетное состояние основное. В данном случае, очевидно, энергии активации нет.  [15]

Страницы:      1    2

www.ngpedia.ru

Учебник химии - Молекулы и атомы

 Молекулы и атомы

Возникновение представлений об атомах и молекулах. Древнегреческий философ Демокрит 2500 лет назад высказал мысль о том, что все тела состоят из мельчайших, невидимых, неделимых, вечно движущихся частиц - атомов. В переводе "атом" означает "неделимый".

Учение о молекулах и атомах в основном было разработано в середине XVIII в. великим русским ученым Михаилом Васильевичем Ломоносовым. Он утверждал, что тела природе состоят из корпускул ( молекул ), в состав которых входят элементы ( атомы ). Многообразие веществ ученый прозорливо объяснил соединением разных атомов в молекулах и различным расположением атомов в них. Удивительно верной и смелой для того времени оказалась мысль М. В. Ломоносова о том, что некоторые корпускулы ( молекулы ) могут состоять из одинаковых элементов ( атомов ). Учение об атомах получило дальнейшие развитие в трудах известного английского ученого Джона Дальтона.

Некоторые представления об атомах и молекулах, высказывание  М. В. Ломоносовым за полвека до Д. Дальтона, оказались более достоверными, научными. Например, английский ученый отрицал возможность существования молекул, образованных одинаковыми атомами.

Ученые о молекулах и атомах окончательно было признано только в 1860 г. на Всемирном съезде химиков в Карлсруэ. Можно ли опытным путем доказать, что молекулы состоят из атомов?

То, что атомы действительно существуют, подтверждают многие химические реакции. так, например, при пропускании постоянного электрического тока через воду в одной из трубок 1 прибора собирается газ, в котором тлеющая лучника ярко вспыхивает. Это кислород. В другой трубке 2 собирается вдвое больше газа, который загорается от зажженной лучники. Это водород. Процесс разложения воды сложный, а в упрощенным виде его можно представит так. Мельчайшая частица воды - молекула воды - образована двумя атомами водорода и одним атомам кислорода. При пропускании постоянного электрического тока через воду молекулы воды распадаются и образуются химически неделимые частицы - атомы кислорода и водорода. Затем атомы соединяются по два и из двух молекул воды образуются одна двухатомная молекула кислорода и две двухатомные молекулы водорода.

Молекулы и атомы. Из курса физики вам уже известно, что многие вещества состоят из молекул.

Молекулы - это мельчайшие частицы многих веществ, состав и химические свойства которых такие же, как  у данного вещества.

Молекулы при химических реакциях распадаются, т. е. они являются химически делимыми частицами.

Атомы - это мельчайшие химически неделимые частицы вещества.

В этом определении следует подчеркнуть  слова  "химически неделимые", так как известны явления, при которых атомы распадаются и выделяется атомная энергия. Эти явления сопровождаются превращениями атомов и изучаются  в курсе ядерной физики.

Вещества молекулярного и немолекулярного строения. Вещества, которые в твердом и газообразном состоянии состоят из молекул, относятся к веществам молекулярного строения.

Типичным представлением таких веществ являются вода. Строение кристалликов воды схематически показано на рисунке. Однако известны вещества, состоящие не из молекул, а из атомов или других частиц, о которых  более подробно вы узнаете позднее. Такие вещества относят к веществам немолекулярного строения.

Отдельные частицы (молекулы, атомы) веществ в твердом (кристаллическом) состоянии располагается в определенной последовательности, образуя структуру, напоминающую решетку. Поэтому пользуются понятием "кристаллическая решетка вещества". Как показано на рисунке, вода в твердом состоянии имеет кристаллические строение. В узлах кристаллической решетки воды находятся молекулы воды. Следовательно, вода имеет молекулярное строение. В узлах кристаллической решетки воды находятся молекулы воды. Следовательно, вода имеет молекулярное строение. Известно много веществ (например, сульфид железа), в узлах кристаллической решетки которых находятся не молекулы, а атомы, в данном случае - атомы железа и серы. Следовательно, сульфид железа относится к веществам с немолекулярным строением.

Чтобы расплавить кристаллические вещество, необходимо разрушить его кристаллическую решетку. Оказывается, что связи между молекулами в кристаллической решетке гораздо слабее, чем связи между атомами. Поэтому, как правило, вещества с молекулярным строением имеют низкую температуру плавления, а вещества с немолекулярным строением имеют высокую температуру плавления.

Предсказать какое строение - молекулярное или немолекулярное - имеет данное вещество, можно по его физическим свойствам. Вещества с молекулярным строением при обычных условиях - это газы (кислород, водород, азот и др.), жидкости (вода, спирт, эфир и др.) или легкоплавкие твердые вещества (сера - температура плавления примерно 113oC, белый фосфор - температура плавления 44oC и др.).

sochi-nochi.narod.ru

Молекула | Наука | FANDOM powered by Wikia

https://ru.wikipedia.org/wiki/%D0%9C%D0%BE%D0%BB%D0%B5%D0%BA%D1%83%D0%BB%D0%B0

Моле́кула (новолатинское molecula, уменьшительное от лат. moles — масса) — микрочастица, образованная из атомов. Наименьшая частица вещества, обладающая всеми его химическими свойствами.

Молекулы состоят из атомов, расположение которых в молекуле передаёт структурная формула (для передачи состава используется т. н. брутто-формула). Молекулы некоторых веществ (например, инертных газов) одноатомны, в то время, как молекулы белков и некоторых искуственно синтезированных соединений могут содержать сотни тысяч атомов. Отдельно рассматриваются макромолекулы полимеров. Отнюдь не все химические вещества построены из молекул, равно как отнюдь не все молекулы отвечают химическим веществам, которые могут быть выделены и охарактеризованы в индивидуальном виде.

Атомы в большинстве молекул связаны химической связью. Тем не менее в настоящее время известны молекула катенанов и ротаксанов, в которых составные части молекулы соединены топологической связью.

Молекулы являются объектом изучения теории строения молекул, квантовой химии, аппарат которых активно использует достижения квантовой физики, в т. ч. релятивистских её разделов. Также в настоящее время развивается такая область химии как молекулярный дизайн. Для определения строения молекул конкретного вещества современная наука располагает колоссальным набором средств: электронная спектроскопия, колебательная спектроскопия, ядерный магнитный резонанс и электронный парамагнитный резонанс и многие другие, но единственными прямыми методами в настоящее время являются дифракционные методы, как то: рентгеноструктурный анализ и дифракция нейтронов.

af:Molekule

als:Molekül ar:جزيء bg:Молекула bs:Molekula ca:Molècula cs:Molekula da:Molekyle de:Molekül el:Μόριο en:Molecule eo:Molekulo es:Molécula et:Molekul fi:Molekyyli fo:Mýl fr:Molécule gl:Molécula he:מולקולה hr:Molekula hu:Molekula id:Molekul io:Molekulo is:Sameind it:Molecola ja:分子 ko:분자 lt:Molekulė lv:Molekula mk:Молекула nds:Molekül nl:Molecuul nn:Molekyl no:Molekyl pl:Cząsteczka pt:Molécula sh:Molekula simple:Molecule sk:Molekula sl:Molekula sq:Molekula sr:Молекул su:Molekul sv:Molekyl th:โมเลกุล tl:Molekula tr:Molekül uk:Молекула uz:Molekula vi:Phân tử zh:分子 zh-yue:分子

ru.science.wikia.com

МОЛЕКУЛА - это... Что такое МОЛЕКУЛА?

  • молекула — ы, ж. molecule f. Мельчайшая частица вещества, обладающая всеми его химическим свойствами, способная существовать самостоятельно. БАС 1. Молекюль. Веселитский 26. Молекула и молекюль. Михельсон 1865. Молекюла. Так называется безконечная… …   Исторический словарь галлицизмов русского языка

  • МОЛЕКУЛА — (новолат. molecule, уменьшит. от лат. moles масса), наименьшая ч ца в ва, обладающая его осн. хим. св вами и состоящая из атомов, соединённых между собой химическими связями. Число атомов в М. составляет от двух (Н2, О2, HF, KCl) до сотен и тысяч …   Физическая энциклопедия

  • МОЛЕКУЛА — МОЛЕКУЛА, мельчайшая частица вещества (например, химического соединения), определяющая химические свойства этого вещества. Молекула может состоять из одного атома, но обычно состоит из двух или более атомов, удерживаемых вместе ХИМИЧЕСКИМИ… …   Научно-технический энциклопедический словарь

  • МОЛЕКУЛА — (уменьшительная форма от лат. moles – масса) наименьшая частица химического соединения; состоит из системы атомов, с помощью химических средств может распадаться на отдельные атомы. Молекулы благородных газов, гелия и т. д. одноатомны; сложнейшие …   Философская энциклопедия

  • молекула — эксимер, генонема, эписома, хромосома, микрочастица, макромолекула Словарь русских синонимов. молекула сущ., кол во синонимов: 10 • биомолекула (1) • …   Словарь синонимов

  • МОЛЕКУЛА — МОЛЕКУЛА, наименьшая частица вещества, обладающая его основными химическими свойствами. Состоит из атомов, расположенных в пространстве в определенном порядке и соединенных химическими связями. Состав и расположение атомов отражены в химической… …   Современная энциклопедия

  • МОЛЕКУЛА — (новолат. molecula уменьшит. от лат. moles масса), микрочастица, образованная из атомов и способная к самостоятельному существованию. Имеет постоянный состав входящих в нее атомных ядер и фиксированное Число электронов и обладает совокупностью… …   Большой Энциклопедический словарь

  • МОЛЕКУЛА — МОЛЕКУЛА, молекулы, жен. (от лат. moles масса) (ест.). Мельчайшая частица вещества, способная существовать самостоятельно и обладающая всеми свойствами данного вещества. Молекулы состоят из атомов. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • МОЛЕКУЛА — МОЛЕКУЛА, ы, жен. Мельчайшая частица вещества, обладающая всеми его химическими свойствами. М. состоит из атомов. | прил. молекулярный, ая, ое. Молекулярная масса. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • Молекула — или частица система или группа атомов …   Энциклопедия Брокгауза и Ефрона

  • МОЛЕКУЛА — [франц. molecule от лат. moles масса ] наименьшая частица данного вещества, обладающая его основными хим. свойствами, способная к самостоятельному существованию и состоящая из одинаковых или различных атомов, соединенных в одно целое хим. связями …   Геологическая энциклопедия

  • dic.academic.ru

    Молекула и атом: что это, что общего и в чем разница

    Очень часто можно услышать мнение, что атом будучи составной частью молекулы, обладает теми же свойствами и имеет аналогичную структуру. Такая позиция лишь отчасти имеет право на существование, поскольку частицы имеют общие и отличительные признаки. Для начала достаточно рассмотреть свойства двух объектов, и на их основе делать дальнейшие выводы.

    Атом

    Атом можно рассматривать как элементарную частицу однородного вещества. Такое вещество, по определению, состоит только из одного химического элемента (С, N, O и другие с периодической таблицы Менделеева). Именно наименьшая часть таких элементов, которая может быть носителем их свойств, и называется атомом. Согласно последним современным представлениям, атом состоит из трех составляющих: протонов, нейтронов и электронов.

    Атом

    Первые две субчастицы вместе составляют базовое ядро, которое имеет положительный заряд. Двигающиеся вокруг ядра электроны привносят компенсационный заряд с противоположным знаком. Таким образом, делается первый вывод, что большинство атомов — электрически нейтральны. Что касается оставшейся части, то в силу различных физико-химических процессов, атомы могут либо присоединять, либо отпускать электроны, что приводит к появлению заряда. Атом имеет массу и размер (определяется размерами ядра) и определяет химические свойства вещества.

    Молекула

    Молекула является минимальной структурной единицей вещества. Такое вещество может состоять из нескольких химических элементов. Однако, молекулой можно считать и одноатомное вещество одного химического элемента — инертный газ аргона. Как и атомы, является электрически нейтральной. Ионизировать молекулу можно, но уже значительно сложнее: атомы внутри молекулы связаны между собой ковалентной, либо ионной связью. Поэтому присоединить или забрать электрон становится значительно сложнее. Большинство молекул имеет сложную архитектурную постройку, где каждый атом заранее занимает отведенное ему место.

    Строение молекулы воды

    Атом и молекула: общие свойства

    Строение. Обе частицы являются структурными единицами вещества. При этом под атомом подразумевается один определенный элемент, молекула же включает в себя уже несколько химически связанных атомов, но структура (положительное ядро с отрицательными электронами) остается той же.

    Электрическая нейтральность. При отсутствии внешних факторов — взаимодействия с другим химическим веществом, направленного электрического поля и других раздражителей, — атомы и молекулы не имеют заряда.

    Замещение. Атом может выступать как молекула в одном случае — при работе с инертными газами. Также молекулой может считаться одноатомная ртуть.

    Наличие массы. Обе частицы имеют свою четкую массу. В случае атома масса зависит от химического элемента и определяется весом ядра (протон почти в 1500 раз тяжелее электрона, поэтому вес отрицательной частицы часто не берется во внимание). Масса молекулы определяется исходя из ее химической формулы — элементов, входящих в ее состав.

    Атом и молекула: отличные свойства

    Неделимость. Атом является мельчайшим элементом, из которого нельзя выделить еще меньшую частицу. (Получение иона влияет только на заряд, но не на вес). Молекулу, в свою очередь, можно разделить на более мелкие молекулы или можно разложить на атомы. Процесса распада легко добиться с использованием химических катализаторов. Иногда достаточно просто нагреть вещество.

    Свободное существование. Молекула может свободно существовать в природе. Атом существует в вольной форме лишь в двух случаях:

    1. Как одноатомная ртуть или инертный газ.
    2. В условиях космоса — как отдельные атомы могут находиться любые химические элементы.

    В остальных случаях атом всегда входит в состав молекулы.

    Образование заряда. Взаимодействие между ядром и электроном в атоме можно легко преодолеть даже мельчайшим электрическим полем. Таким образом, — из атома легко получить положительный или отрицательный ион. Наличие химических связей между атомами внутри молекулы требует приложения гораздо большего электрического поля или взаимодействия с другим химически активным веществом.

    vchemraznica.ru



    О сайте

    Онлайн-журнал "Автобайки" - первое на постсоветском пространстве издание, призванное осветить проблемы радовых автолюбителей с привлечение экспертов в области автомобилестроения, автоюристов, автомехаников. Вопросы и пожелания о работе сайта принимаются по адресу: Онлайн-журнал "Автобайки"