Как вычислить диаметр, зная длину окружности. Как узнать окружность зная диаметр


Как Узнать Длину Окружности Зная Диаметр ~ Повседневные вопросы

Как высчитать длину окружности и периметр круга?

Окружность встречается в ежедневной жизни не пореже, чем прямоугольник. А у многих людей задачка о том, как высчитать длину окружности, вызывает затруднение. И все так как у нее нет углов. При их наличии все стало бы намного проще.

Длина окружности. Математика 6 класс.

Эта плоская фигура представляет собой некое количество точек, которые размещены на схожем удалении от очередной, которая является центром. Это расстояние именуется радиусом.

В ежедневной жизни нечасто приходится вычислять длину окружности, не считая людей, которые являются инженерами и конструкторами. Они делают проекты устройств, в каких употребляются, к примеру, шестеренки, иллюминаторы и колеса. Архитекторы делают дома, имеющие круглые либо арочные окна.

В каждом из этих и других случаях требуется своя точность. При этом рассчитать длину окружности однозначно оказывается нереально. Связано это с бесконечностью основного числа, имеющегося в формуле. «Пи» до сего времени уточняется. И употребляется в большинстве случаев округлое значение. Степень точности выбирается таковой, чтоб дать очень верный ответ.

Обозначения величин и формулы.

До того как рассчитать длину окружности, будет нужно условиться о том, какая буковка что обозначает. Это комфортно записать в таблице.

Сейчас просто ответить на вопрос о том, как высчитать длину окружности по радиусу, для этого будет нужно такая формула:

Тут и дальше π берется округлым. В большинстве случаев в задачках употребляют значение 3,14. Но время от времени нужна большая точность тогда и используют такое число: 3,14159.

Так как радиус и поперечник связаны вместе, другими словами и другая формула для расчетов. Потому что радиус вдвое меньше, то выражение малость видоизменится. И формула того, как высчитать длину окружности, зная поперечник, будет последующей:

Как быть, если необходимо вычислить периметр круга?

Просто вспомнить, что круг содержит в себе все точки снутри окружности. А означает, его периметр совпадает с ее длиной. И после того, как рассчитать длину окружности, поставить символ равенства с периметром круга.

Кстати, и обозначения у их такие же. Это касается радиуса и поперечника, а периметром является латинская буковка P.

Примеры заданий.

Условие. Узнать длину окружности, радиус которой равен 5 см.

Решение. Тут нетрудно осознать, как высчитать длину окружности. Необходимо только пользоваться первой формулой. Так как радиус известен, то будет нужно только подставить значения и сосчитать. 2 умноженное на радиус, равный 5 см, даст 10. Осталось еще помножить его на значение π. 3,14 10 = 31,4 (см).

Условие. Имеется колесо, длина окружности которого известна и равна 1256 мм. Нужно вычислить его радиус.

Решение. В этом задании будет нужно пользоваться той же формулой. Но только известную длину необходимо будет поделить на произведение 2 и π. Выходит, что произведение даст итог: 6,28. После деления остается число: 200. Это разыскиваемая величина.

Условие. Вычислить поперечник, если известна длина окружности, которая равна 56,52 см.

Решение. Аналогично предшествующей задачке будет нужно поделить известную длину на значение π, округлое до сотых. В итоге такового деяния выходит число 18. Итог получен.

Условие. Стрелки часов имеют длину 3 и 5 см. Необходимо вычислить длины окружностей, которые обрисовывают их концы.

Решение. Так как стрелки совпадают с радиусами окружностей, то будет нужно 1-ая формула. Ею необходимо пользоваться дважды.

Для первой длины произведение будет состоять из множителей: 2; 3,14 и 3. Итогом будет число 18,84 см.

Для второго ответа необходимо перемножить 2, π и 5. Произведение даст число: 31,4 см.

Условие. Белка бегает в колесе поперечником 2 м. Какое расстояние она пробегает за один полный оборот колеса?

Решение. Это расстояние равно длине окружности. Потому необходимо пользоваться подходящей формулой. А конкретно перемножить значение π и 2 м. Подсчеты дают итог: 6,28 м.

Тезисы

Как вычислить длину окружности круга. Как вычислить длину окружности либо просто желаете узнать, зная поперечник. Напомните, как вычислить поперечник, зная длину окружности. Для того то бы вычислить поперечник, зная длину окружности есть формула Формула для расчета. как выяснить диаметр и радиус зная длину окружности. Формула длины окружности-2 П r Где П=3,14,двойка тоже понятно. Вот известную для вас длину. Как отыскать длину окружности. Онлайн калькулятор. Длина окружности. Онлайн калькулятор который поможет отыскать длину окружности. d - диаметр окружности. Как отыскать длину окружности, зная ее радиус как. Как вычислить поперечник, зная длину окружности? Как вычислить диаметр, зная длину чтоб вычислить поперечник окружности, зная Как выяснить. Как Выяснить Поперечник, Зная Длину Окружности. Ответы на вопрос Как выяснить поперечник, зная длину окружности? в рубрике Образование на. Формула расчета длины окружности. Вычислить длину окружности, d – поперечник окружности. как окружности. Как найти диаметр окружности, если известна длина.

Похожие вопросы

kartaklada.ru

Как узнать диаметр круга

При проведении построений различных геометрических фигур иногда требуется определить их характеристики: длину, ширину, высоту и так далее. Если речь идет о круге или окружности, то часто приходится определять их диаметр. Диаметр представляет собой отрезок прямой, который соединяет две наиболее удаленных друг от друга точки, расположенные на окружности.

Вам понадобится

  • - измерительная линейка;
  • - циркуль;
  • - калькулятор.

Инструкция

  • В самом простом случае определите диаметр по формуле D = 2R, где R – радиус окружности с центром в точке О. Такая формула удобна, если вы вычерчиваете круг с заранее оговоренным радиусом. Например, если при построении фигуры вы установите раствор ножек циркуля равным 50 мм, то диаметр круга, полученного в результате, будет равен удвоенному радиусу, то есть 100 мм.
  • Если вам известна длина окружности, составляющей внешнюю границу круга, то используйте для определения диаметра формулу:D = L / p, гдеL – длина окружности;p – число «пи», равное приблизительно 3,14.Например, если длина окружности равна 180 мм, то диаметр будет равняться приблизительно: D = 180 / 3,14 = 57,3 мм.
  • Если вы имеете предварительно вычерченный круг с неизвестными радиусом, диаметром и длиной окружности, то для приблизительного измерения диаметра используйте циркуль и измерительную линейку с делениями. Сложность заключается в том, чтобы найти на окружность две точки, максимально далеко отстоящие друг от друга, то есть такие, которые будут располагаться именно на диаметре.
  • При помощи линейки проведите прямую линию, чтобы она пересекала окружность в любом месте. Точки пересечения линии и окружности отметьте как А и В. Теперь Установите раствор циркуля таким образом, чтобы он был больше половины отрезка АВ.
  • Установите иглу циркуля в точку А и проведите дугу, пересекающую отрезок АВ или даже окружность. Теперь, не меняя раствор циркуля, установите его в точку В и проделайте то же самое. В результате вы получите точки пересечения двух окружностей по обе стороны от отрезка АВ. Соедините их по линейке прямой линией, чтобы она пересекла окружность в точках C и D. Отрезок CD и будет искомым диаметром.
  • Теперь измерьте диаметр при помощи измерительной линейки, приложив ее к точкам C и D. Второй способ определения диаметра: приложить ножки циркуля вначале к точкам C и D, а затем перенести раствор циркуля на измерительную шкалу линейки.

completerepair.ru

Как вычислить диаметр, зная длину окружности

Что такое диаметр окружностиПрежде чем ответить на вопрос, разберитесь, чем круг отличается от окружности. Для этого проделайте небольшую работу. Сначала нарисуйте на листе бумаги точку, в которую поместите одну ножку циркуля с иглой. Второй ножкой с помощью грифеля ставьте точки до тех пор, пока они не сольются в одну линию Как найти длину вписанной окружностиОкружность будет считаться вписанной в многоугольник только в том случае, если все стороны данного многоугольника без исключения касаются данной окружности. Найти длину вписанной окружности очень просто. Спонсор размещения P&G Статьи по теме "Как найти длину вписанной окружности" Как вычислить Как найти диаметр окружностиДиаметр окружности — это отрезок прямой, соединяющий пару наиболее удаленных друг от друга точек окружности, проходящий через центр окружности. Слово "диаметр" произошло от греческого слова "diametros" - поперечный. Обычно диаметр обозначается латинской буквой D или значком O. Спонсор размещения Как найти окружность, зная только радиусОкружность - это фигура, которая состоит из всех точек плоскости, одинаково удаленных от данной точки (центра), лежащей в той же плоскости. Отрезок, соединяющий точку окружности с центром называется радиусом. Если вы знаете радиус окружности, то сможете вычислить и ее длину. Вам понадобится Как определить диаметр окружностиОкружность - замкнутая кривая, точки которой равноудалены от ее центра. Основными характеристиками окружности являются радиус и диаметр, связанные между собой как визуально, так и арифметически. Спонсор размещения P&G Статьи по теме "Как определить диаметр окружности" Как найти диаметр окружности, Как по длине окружности узнать диаметрОпределение диаметра окружности может пригодиться не только для решения геометрических задач, но и помочь на практике. Например, зная диаметр горлышка банки, вы точно не ошибетесь в выборе крышки для нее. То же утверждение справедливо и для более габаритных окружностей. Спонсор размещения P&G Как найти окружность, зная диаметрОкружность представляет собой фигуру плоскости, чьи точки одинаково удалены от ее центра, а диаметр окружности – отрезок, проходящий через этот центр и соединяющий две самые удаленные точки окружности. Именно диаметр нередко становится той величиной, которая позволяет решить большинство задач в Как найти площадь, зная диаметрЗадачи на вычисление площади круга часто встречаются в школьном курсе геометрии. Чтобы найти площадь круга, необходимо знать длину диаметра или радиуса окружности, в которую он заключен. Вам понадобится - длина диаметра окружности. Спонсор размещения P&G Статьи по теме "Как найти площадь, зная Как посчитать длину окружностиОкружность - геометрическая фигура, расположенная на плоскости. Состоит окружность из множества точек, которые находятся на равном расстоянии от заданного центра. Для того, чтобы посчитать ее длину, можно применить несколько формул. Вам понадобится Понадобятся следующие значения: R - длина радиуса Как рассчитать окружностьОкружность - это такая геометрическая фигура, которая состоит из множества точек, которые удалены от центра О на равное от него расстояние, образуя замкнутую фигуру. Для подсчета длины окружности можно воспользоваться двумя методами: Вам понадобится Знание радиуса окружности, диаметра. Спонсор

masterotvetov.com

Как найти окружность, зная диаметр

Окружность представляет собой фигуру плоскости, чьи точки одинаково удалены от ее центра, а диаметр окружности – отрезок, проходящий через этот центр и соединяющий две самые удаленные точки окружности. Именно диаметр нередко становится той величиной, которая позволяет решить большинство задач в геометрии по нахождению окружности.

Инструкция

  • Например, чтобы найти длину окружности, достаточно определить в виде исходных данных известный диаметр. Задайте, что вам известен диаметр окружности, равный N, и начертите в соответствии с этими данными окружность. Поскольку диаметр соединяет две точки окружности и проходит при этом через центр, следовательно, радиус окружности всегда будет равен значению половинного диаметра, то есть r = N/2.
  • Используйте для нахождения длины либо любой другой величины математическую константу π. Она представляет собой отношение значения длины окружности к значению длины диаметра окружности и в геометрических вычислениях принимается равной π ≈ 3,14.
  • Чтобы определить длину окружности, возьмите стандартную формулу L = π*D и подставьте значение диаметра D = N. В результате диаметр, умноженный на величину 3.14, покажет приблизительную длину окружности.
  • В случае когда требуется определить не только длину окружности, но и ее площадь, также воспользуйтесь значением константы π. Только в этот раз воспользуйтесь другой формулой, согласно которой площадь круга определяется как длина радиуса, возведенная квадрат, и умноженная на число π. Соответственно формула выглядит следующим образом: S = π*(r^2).
  • Поскольку в исходных данных определено, что радиус r = N/2, следовательно, формула площади окружности видоизменяется: S = π*(r^2) = π*((N/2)^2). В результате, если вы подставите в формулу значение известного диаметра, вы получите искомую площадь.
  • Не забудьте проверить, в каких единицах измерения необходимо определить длину либо площадь окружности. Если в исходных данных определено, что диаметр измеряется в миллиметрах, площадь круга также должна измеряться в миллиметрах. Для других единиц - см2 или м2 расчеты производятся аналогично.

completerepair.ru

Как узнать диаметр, зная окружность

Число «пи» - это отношение длины окружности к ее диаметру. Отсюда вытекает, что длина окружности равняется «пи дэ» (C = π*D). Исходя из этого соотношения несложно вывести формулу обратной зависимости, т.е. D=С/π.

Вам понадобится

  • - калькулятор.

Инструкция

  • Чтобы узнать диаметр окружности, зная ее длину, разделите длину окружности на число «пи» (π), равное примерно три целых и четырнадцать сотых (3,14). Значение диаметра при этом получится в тех же единицах измерения, что и длина окружности. Эту формулу можно записать в следующем виде:D=С/π,где:С – длина окружности,π – число «пи», примерно равное 3,14.
  • ПримерДлина экватора Земли примерно равняется 40 000 километров. Чему равняется диаметр Земли?Решение: 40000/3,14=12739 (км).Ответ: диаметр земли равняется примерно 12740 километров.
  • Для более точного вычисления диаметра окружности воспользуйтесь более точным представлением числа «пи», например: 3,1415926535897932384626433832795. Конечно же вовсе необязательно использовать все знаки этого числа, для большинства инженерных расчетов вполне достаточно 3,1416.
  • При вычислении диаметра окружности на основании ее длины, обратите внимание, что на многих (особенно, инженерных) калькуляторах имеется специальная клавиша для ввода числа «пи». Обозначается такая кнопка надписью на (над, под) ней «π» или чем-то аналогичным. Так, например, в виртуальном калькуляторе Windows соответствующая кнопка обозначена как pi. Использование специальной клавиши позволяет значительно ускорить ввод числа «пи» и избежать ошибок при его вводе. К тому же, число «пи», хранящееся в памяти калькулятора, представлено там с максимально возможной для каждого устройства точностью.
  • Иногда измерение длины окружности является единственным практически приемлемым способом узнать ее диаметр. Особенно это касается труб и цилиндрических конструкций, «не имеющих начала и конца».
  • Чтобы измерить длину окружности (поперечного сечения) цилиндрического предмета, возьмите нитку или веревку достаточной длины и обмотайте ее вокруг этого цилиндра (в один оборот).
  • Если необходима очень высокая точность измерений или предмет имеет очень маленький диаметр, то оберните цилиндр несколько раз, а затем разделите длину нитки (веревки) на количество оборотов. Пропорционально количеству витков увеличится и точность измерения длины окружности, а, соответственно, и вычисление ее диаметра.

completerepair.ru

Как найти диаметр, если известна окружность

Круг - это плоская геометрическая фигура, все точки которой находятся на одинаковом и отличном от нуля удалении от выбранной точки, которую называют центром окружности. Прямую, соединяющую любые две точки круга и проходящую через центр, называют его диаметром. Суммарная длина всех границ двухмерной фигуры, которую обычно называют периметром, у круга чаще обозначается как «длина окружности». Зная длину окружности можно вычислить и ее диаметр.

Спонсор размещения P&G Статьи по теме "Как найти диаметр, если известна окружность" Как вырастить кристалл в домашних условиях из соли Как разделить слова на слоги Как найти длину вектора

Инструкция

1

Используйте для нахождения диаметра одно из основных свойств окружности, которое заключается в том, что соотношение длины ее периметра к диаметру одинаково для абсолютно всех окружностей. Конечно, такое постоянство не осталось не отмеченным математиками, и эта пропорция давно уже получила собственное название - это число Пи (? - первая буква греческих слов «окружность» и «периметр»). Числовое выражение этой константы определяется длиной окружности, у которой диаметр равен единице.

2

Делите известную длину окружности на число Пи, чтобы вычислить ее диаметр. Так как это число является «иррациональным», то не имеет конечного значения - это бесконечная дробь. Округляйте число Пи в соответствии с точностью результата, которую вам необходимо получить.

3

Используйте какой-либо калькулятор, чтобы рассчитать длину диаметра, если сделать это в уме не получается. Например, можно воспользоваться тем, который встроен в поисковую систему Nigma или Google - он понимает математические операции, вводимые на «человеческом» языке. Например, если известная длина окружности составляет четыре метра, то для нахождения диаметра можно «по-человечески» попросить поисковик: «4 метра разделить на пи». Но если вы введете в поле поискового запроса, например, «4/пи», то поисковик поймет и такую постановку задачи. В любом случае ответом будет «1.27323954 метра».

4

Воспользуйтесь программным калькулятором Windows, если вам более привычны интерфейсы с обычными кнопками. Чтобы не искать ссылку на его запуск в глубинных уровнях главного меню системы, нажмите сочетание клавиш WIN + R, введите команду calc и нажмите клавишу Enter. Интерфейс этой программы очень незначительно отличается от обычных калькуляторов, поэтому операция деления длины окружности на число Пи вряд ли вызовет какие-либо затруднения.

Как просто

masterotvetov.com

Как найти диаметр окружности, если известна длина окружности

Как найти диаметр окружности, если известна длина окружности?

Как найти диаметр окружности, если известна длина окружности?

  • Для того, чтобы найти диаметр окружности, если известна длина окружности необходимо воспользоваться следующей формулой L = D, где =3,1416; L— длина; D-диаметр.Отсюда выражаем диаметр: D=L / .Диаметр теперь известен.
  • Диаметр окружности вычисляется при условии что вы знаете один из параметров ,площадь, длину окружности,или радиус.Если известна длина окружности то для вычисления диаметра разделите ее на число пи,равняется оно 3,14.Например длина окружности 20 сантимеров,то диаметр будет равняться 20см/(3,14)=6,37.
  • Кажется еще древние математики Египта и Греции решили этот вопрос, когда заметили, что для любой окружности отношение ее длины к диаметру всегда одно и тоже и является одной из самых известных констант в математике — это число ПИ. То есть зная радиус или диаметр окружности мы можем легко найти ее длину и наоборот, не прибегая к дополнительным выводам формул, просто по определению. В данном случае диаметр окружности будет равен отношению длины окружности к числу ПИ:D = L / пгде п = 3.14.
  • Для того, чтобы найти диаметр окружности, нужно вспомнить формулу длины окружности L:L = 2R.— константа, которая приблизительно равно 3,14.Диаметр окружности — это удвоенный радиус, то есть 2R.Формулу можно переписать в виде:L = D.Значит, D = L/.ПримерДана длина окружности L = 20.Найдм диаметр по этой формуле: D 20/3,14 6,369.
  • Исходные данные: длина окружности LНеобходимо найти: диаметр окружности DРешение такое:Вот формулы касающиеся расчета

Таким образом, диаметр окружности равен длине окружности, которую необходимо разделить на число Пи, приблизительно равное 3,14.

D = L / Пи = L / 3,14

D— диаметр окружности

L— длина окружности

Пи -число Пи, приблизительно равное 3,14

  • А попробуйте разделить длину окружности на 3,1415926 — вдруг получится! Тогда ту пятрку будем вместе пропивать))) если будет двойка за решение задачи, то мы незнакомые ! Не выдавайте меня пожалуйста! Я больше так не буду!)))

  • Соотношение длины окружности и диаметра окружности определяется очень простой формулой, которую мы прекрасно помнили в школе и забыли сейчас, потому что редко применяем.

    Диаметр = длина окружности : 3,14 (длину окружности поделить на число пи, равное 3,14 )

  • Периметр окружности равен произведению числа Пи, радиуса этой окружности и числа 2:

    L = 2**R

    А диаметр окружности равен произведению радиуса на число 2:

    d = 2*R

    Выражаем из первой формулы радиус:

    R = L /(2*)

    и вставляем во вторую формулу:

    d = 2 * L / (2*)

    Двойки сократились и получилось:

    d = L /

    Число Пи известно. Это константа: 3,1415926535….

    Некоторые ограничиваются двумя знаками после запятой: 3,14.

    Ответ: d = L / L / 3,14

  • Длина окружности определяется по формуле

    L=2(пи)*R=(пи)*D

    D=L/(пи)=L/3,14

    D- диаметр окружности

    Из этих формул очень хорошо видно, что если диаметр увеличить на 1 метр, то длина окружности увеличится на 3,14 м и это не зависит от величины тела, например:

    если длину окружности Земли увеличить на 9,42 м (примерно 10 метров), то радиус Земли увеличится на 1,5 м а диаметр на 3 м

  • Источник: http://info-4all.ru/obrazovanie/kak-najti-diametr-okruzhnosti-esli-izvestna-dlina-okruzhnosti/

    Как найти диаметр окружности, если известна длина окружности?

    Окружность – это замкнутая линия, точки которой равноудалены от ее центра.

    Диаметр – это отрезок, который соединяет две наиболее удаленные друг от друга точки на окружности и проходит через ее центр, а также длина такого отрезка.

    Для того чтобы найти диаметр круга, необходимо знать его размеры – длину окружности, радиус, или ее площадь. Если же данные параметры не известны, то диаметр можно найти с помощью дополнительного чертежа.

    Подробнее: getonholiday.com

    Окружность — замкнутая кривая, все точки которой находятся на одинаковом расстоянии от центра. Эта фигура является плоской. Поэтому решение задачи, вопрос которой состоит в том, как найти длину окружности, является достаточно простым. Все имеющиеся способы, мы рассмотрим в сегодняшней статье.

    На данной странице калькулятор поможет рассчитать периметр круга или длину окружности онлайн. Для расчета задайте радиус или диаметр. Круг – множество точек плоскости, удаленных от заданной точки этой плоскости (центр круг) на расстояние, не превышающее заданное (радиус круга).

    Диаметр круга или сферы – это хорда или линия, соединяющая две точки окружности, и проходящая через центр круга. Таким образом, диаметр – это два радиуса, расположенных по отношению друг к другу под углом 180°, так чтобы получить прямую линию.

    Диаметр круга напрямую связан с радиусом и представляет собой его удвоенное значение. Но это не единственный способ вычислить диаметр.

    Зная площадь круга, можно конвертировать формулу, подставив вместо радиуса половину диаметра, и вывести значение последнего:

    Окружность — замкнутая кривая линия, все точки которой находятся на равном расстоянии от одной точки. Эта точка — центр окружности, а отрезок между точкой на кривой и ее центром называется радиусом окружности. Инструкция 1Если через центр… Как по длине окружности узнать диаметр

    Определение диаметра окружности может пригодиться не только для решения геометрических задач, но и помочь на практике. Например, зная диаметр горлышка банки, вы точно не ошибетесь в выборе крышки для нее. То же утверждение справедливо и для более…

    Если в задаче известны такие величины, как длина окружности, ее радиус или площадь круга, который ограничен данной окружностью, то вычисление диаметра будет несложным. Существует несколько способов, которыми можно высчитать диаметр окружности. Они довольно просты и вовсе не вызывают никаких трудностей, как многим кажется на первый взгляд.

    Окружностью называется ряд равноудалённых точек от одной точки, которая, в свою очередь, является центром этой окружности. Окружность имеет также свой радиус, равный расстоянию этих точек от центра. Отношение длины, какой либо окружности к её диаметру, для всех окружностей одинаково. Это отношение есть число, являющееся математической константой, которое обозначается греческой буквой π.

    Подробнее: simple-math.ru

    Для начала, давайте разберемся, что такое окружность и в чем ее отличие от круга. Возьмите ручку или карандаш красного цвета и нарисуйте на листке бумаги обычный круг. Закрасьте всю середину полученной фигуры синим карандашом. Красный контур, обозначающий границы фигуры, – это окружность. А вот синее содержимое внутри нее — и есть круг.

    Чтобы написать, как найти диаметр круга, необходимо сначала определить, что это такое. Итак, диаметр круга – это прямая, которая проходит через центр круга и соединяет точки на окружности. Ниже мы рассмотрим способы нахождения диаметра окружности через её длину, площадь вписанного круга, и через радиус.

    Для того что бы вычислить диаметр круга необходимо знать его длину или площадь. Если нам известа одна из указаннх величин, для нас не составит труда вычислить диаметр круга. Диаметр круга рассчитывается по следующим формулам: Где D — диаметр круга, S – площадь круга, P – длина круга, R — радиус, ? – число Пи которое всегда примерно равно 3,14.

    2 метода:Вычисление диаметра окружности с использованием радиуса, длины окружности или площади кругаВычисление диаметра окружности из чертежа окружности Вычислить диаметр окружности не составит труда, если вы знаете какие-либо другие ее размеры: радиус, длину окружности или площадь ограничиваемого ею круга. Диаметр можно вычислить, даже не зная этих размеров — при наличии начерченной окружности. Если вы хотите узнать, как вычислить диаметр окружности, следуйте указанным ниже шагам.

    Подробнее: ru.wikihow.com

    Окружность – это замкнутая линия, точки которой равноудалены от ее центра.

    Диаметр – это отрезок, который соединяет две наиболее удаленные друг от друга точки на окружности и проходит через ее центр, а также длина такого отрезка.

    Для того чтобы найти диаметр круга, необходимо знать его размеры – длину окружности, радиус, или ее площадь. Если же данные параметры не известны, то диаметр можно найти с помощью дополнительного чертежа.

    Отрезок, соединяющий две точки окружности и проходящий через ее центр, имеет непрерывное соотношение с замкнутой линией, не имеющей самопересечения, все точки которой находятся на идентичном расстоянии от центра. Это же дозволено сформулировать проще: диаметр всякий окружности приблизительно в 3 раза поменьше ее длины. Вам понадобится

    Очень часто при решении школьных заданий по математике или физике возникает вопрос — как найти длину окружности, зная диаметр? На самом деле никаких сложностей в решении этой проблемы нет, нужно только чётко представлять себе, какие формулы, понятия и определения требуются для этого.

    Источник: http://www.chsvu.ru/kak-najti-diametr-okruzhnosti-esli-izvestna-dlina-okruzhnosti/

    Совет 1: Как найти диаметр окружности, если известна длина окружности

    Запишите длину окружности. диаметр которой вы намерены определить. Еще много веков назад люди брали для изготовления круглой корзины нужного размера, или диаметра, прутья в три раза более длинные.

    Позже ученые доказали, что при делении длины каждой окружности на ее диаметр получается одно и то же не натуральное число. Его величина всё время уточнялась, хотя точность расчетов всегда была высока.

    Например, в Древнем Египте его выражали неправильной дробью 256/8, имеющей отклонение не более одного процента.

    Вспомните, что впервые математически вычислил это соотношение Архимед. Он построил правильные 96-тиугольники внутри окружности и вокруг нее.

    Периметр вписанного многоугольника принял за минимально возможную длину окружности, периметр описанной фигуры – за максимальный размер. По Архимеду соотношение длины окружности и диаметра равно 3,1419.

    Значительно позже это число «удлинил» до восьми знаков китайский математик Цзу Чунчжи. Его вычисления 900 лет оставались наиболее точными. Только в XVIII веке было посчитано сто знаков после запятой.

    А с 1706 года эта бесконечная десятичная дробь благодаря английскому математику Уильяму Джонсу приобрела имя. Он обозначил ее первой буквой греческих слов периметр и окружность (периферия). Сегодня компьютер легко вычисляет миллионы знаков числа Пи: 3,141592653589793238462643…

    Для расчетов число Пи сократите до 3,14. Получится, что для любой окружности ее длина, деленная на диаметр равна этому числу: L:d=3,14.

    Выразите из этого утверждения формулу для нахождения диаметра. Получится, чтобы найти диаметр окружности надо длину окружности поделить на число Пи. Это выглядит так: d = L:3,14. Это универсальный способ найти диаметр, когда у окружности известна ее длина.

    Итак, известна длина окружности, допустим, 15,7 см, разделите эту цифру на 3,14. Диаметр будет равен 5 см. Запишите это так: d = 15,7. 3,14 = 5 см.

    Найдите диаметр по длине окружности, используя специальные таблицы для вычисления длины окружности по диаметру. Эти таблицы включают в разные справочники. Например, они есть в книге «Четырехзначные математические таблицы» В.М. Брадиса.

    Совет 2: Как найти диаметр, если известна окружность

    Круг — это плоская геометрическая фигура, все точки которой находятся на одинаковом и отличном от нуля удалении от выбранной точки, которую называют центром окружности.

    Прямую, соединяющую любые две точки круга и проходящую через центр, называют его диаметром.

    Суммарная длина всех границ двухмерной фигуры, которую обычно называют периметром, у круга чаще обозначается как «длина окружности». Зная длину окружности можно вычислить и ее диаметр.

    Используйте для нахождения диаметра одно из основных свойств окружности, которое заключается в том, что соотношение длины ее периметра к диаметру одинаково для абсолютно всех окружностей.

    Конечно, такое постоянство не осталось не отмеченным математиками, и эта пропорция давно уже получила собственное название — это число Пи (&pi, — первая буква греческих слов «окружность » и «периметр»).

    Числовое выражение этой константы определяется длиной окружности, у которой диаметр равен единице.

    https://www.youtube.com/watch?v=Tkb0Iss5yRY

    Делите известную длину окружности на число Пи, чтобы вычислить ее диаметр. Так как это число является «иррациональным», то не имеет конечного значения — это бесконечная дробь. Округляйте число Пи в соответствии с точностью результата, которую вам необходимо получить.

    Источник: https://how.qip.ru/others/sovet-1-kak-nayti-diametr-okruzhnosti-esli-izvestna-dlina-okruzhnosti

    Как найти диаметр окружности

    Способы найти диаметр окружности — методы вычислений.

    Окружность – это замкнутая линия, точки которой равноудалены от ее центра. Диаметр – это отрезок, который соединяет две наиболее удаленные друг от друга точки на окружности и проходит через ее центр, а также длина такого отрезка.

    Для того чтобы найти диаметр круга, необходимо знать его размеры – длину окружности, радиус, или ее площадь. Если же данные параметры не известны, то диаметр можно найти с помощью дополнительного чертежа.

    Математические формулы

    У окружности есть четыре основных параметра (радиус, диаметр, длина, площадь), которые связаны между собой математическими формулами. Для того чтобы найти диаметр окружности, необходимо учесть, что:

    • Если известен радиус (расстояние от центра окружности до любой точки на ней), то умножить его на два.
    • Если известна длина окружности, разделить его на число π (равное приблизительно 3,14).
    • Если известна площадь окружности, то необходимо извлечь корень из площади окружности и разделить результат на «π».

    Дополнительный чертеж

    Если ни один из основных параметров окружности не известен, то для нахождения диаметра можно использовать дополнительный чертеж, построенный с помощью циркуля и линейки. Для этого потребуется:

    • Начертить внутри окружности горизонтальную прямую, проходящую от одной точки на ней к другой, с помощью линейки и угольника.
    • Отметить точки, в которых прямая пересекает окружность, буквами «А» и «В».
    • Начертить с помощью циркуля две пересекающиеся окружности с центрами в точках А и В.
    • Отметить точки, в которых пересекаются начерченные циркулем окружности, буквами «С» и «D».
    • Провести с помощью линейки или угольника прямую через точки С и D.
    • Измерить часть прямой между двумя точками на исходной окружности линейкой и получить искомый радиус.

    Источник: http://getonholiday.com/bez-rubriki/kak-nayti-diametr-okruzhnosti.html

    Составление системы уравнений

    Источник: http://oldskola1.narod.ru/Shev03/ArifSh0304.htm

    Как вычислить длину окружности

    И хоть мы все учились в школе и вроде бы должны помнить длину окружности, но когда нам нужно для какого-то проекта или узнать сколько нужно метров для ограды круглого бассейна на даче вычислить длину окружности, мы не всегда можем вспомнить эту простую формулу.

    Вычислить длину окружности можно при помощи одной из двух формул.

    Вычисление длины круга через диаметр

    C = πdC – длина искомой окружности, d – диаметр данной окружности, π – всемирно известно число «пи», которое равно 3,14.

    Пример: Допустим нам нужно поставить круглый забор на расстоянии 15 м вокруг бассейна у которого диаметр 10 м. Первым делом мы узнаем искомый нам диаметр нужной нам окружности по которой пройдет наш забор.

    Для этого к диаметр бассейна мы прибавляем расстояние на которое мы должны поставить забор с каждой стороны. Получаем d=10+15+15; d=40 м. Теперь подставляем наш диаметр в формулу и получаем, что длина искомой окружности получится С=3,14*40; С=125,6 м.

    Все теперь можно идти в строительный магазин и заказывать забор.

    Вычисление длины круга через радиус

    C = 2πrC – длина искомой окружности, r – радиус данной окружности, π – постоянная величина которая всегда равна 3,14.

    Пример: Предположим хозяйке для пирога нужно для пирога вырезать бумажную полоску. Радиус пирога 55 см. Подставляем наши данные в формулу и получаем, что длина окружности С = 55*3,14; С = 172,7 см.

    Если Вы собираетесь производить свои вычисления на калькуляторе, то лучше всего, что бы там была кнопка π.

    Sabibon — самое интересное в интернете

    Источник: http://sabibon.info/15437-kak-vychislit-dlinu-okruzhnosti.html

    Длина окружности и площадь круга

    Длина любой окружности больше своего диаметра в одно и то же число раз, а именно, приблизительно в 3,14 раза. Для обозначения этой величины используется маленькая (строчная) греческая буква π (пи):

    Таким образом, длину окружности (C) можно вычислить, умножив константу π на диаметр (D), или умножив π на удвоенный радиус, так как диаметр равен двум радиусам. Следовательно, формула длины окружности будет выглядеть так:

    C = πD = 2πR

    где C – длина окружности, π – константа, D – диаметр окружности, R – радиус окружности.

    Так как окружность является границей круга, то длину окружности можно также назвать длиной круга или периметром круга.

    Задачи на длину окружности

    Задача 1. Найти длину окружности, если её диаметр равен 5 см.

    Так как длина окружности равна π умноженное на диаметр, то длина окружности с диаметром 5 см будет равна:

    C ≈ 3,14 · 5 = 15,7 (см)

    Задача 2. Найти длину окружности, радиус которой равен 3,5 м.

    Сначала найдём диаметр окружности, умножив длину радиуса на 2:

    D = 3,5 · 2 = 7 (м)

    теперь найдём длину окружности, умножив π на диаметр:

    C ≈ 3,14 · 7 = 21,98 (м)

    Задача 3. Найти радиус окружности, длина которой равна 7,85 м.

    Чтобы найти радиус окружности по её длине, надо длину окружности разделить на 2π

    следовательно радиус будет равен:

    Часть  третья.

    ДЕСЯТИЧНЫЕ ДРОБИ.

    Глава    семнадцатая.

    Решение задач с геометрическим содержанием.

    § 117. Длина окружности и площадь круга.§ 118. Поверхность и. объём цилиндра§ 119. Таблицы для вычисления длины окружности по диаметру

    § 117. Длина окружности и площадь круга.

    1. Длина окружности. Окружностью называется замкнутая плоская кривая линия, все точки которой находятся на равном расстоянии от одной точки (О), называемой   центром окружности   (рис. 27).

    Окружность вычерчивается с помощью циркуля. Для этого острую ножку циркуля ставят в центр, а другую (с карандашом) вращают вокруг первой до тех пор, пока конец карандаша не вычертит полной окружности. Расстояние от центра до любой точки окружности называется её радиусом. Из определения следует, что все радиусы одной окружности равны между собой.

    Отрезок прямой линии (АВ), соединяющий две любые точки окружности и проходящий через её центр, называется диаметром. Все диаметры одной окружности равны между собой; диаметр равен двум радиусам.

    Как найти длину окружности? Практически в некоторых случаях длину окружности  можно найти  путём непосредственного измерения. Это можно сделать, например, при измерении окружности сравнительно небольших предметов (ведро, стакан и т. п.). Для этого можно воспользоваться рулеткой, тесьмой или шнуром.

    В математике применяется приём косвенного определения длины окружности. Он состоит в вычислении по готовой формуле, которую мы сейчас выведем.

    Если мы возьмём несколько больших и малых круглых предметов (монета, стакан, ведро, бочка и т. д.) и измерим у каждого из них длину окружности и длину диаметра, то получим для каждого предмета два числа (одно, измеряющее длину окружности, и другое — длину диаметра). Естественно, что для малых предметов эти числа будут небольшими, а для   крупных — большими.

    Однако если мы в каждом из этих случаев возьмём отношение полученных двух чисел (длины окружности и диаметра), то при тщательном выполнении измерения найдём почти одно и то же число.

    Обозначим длину окружности буквой С, длину диаметра буквой D, тогда отношение их будет иметь вид С : D. Фактические измерения всегда сопровождаются неизбежными неточностями.

    Но, выполнив указанный опыт и произведя необходимые вычисления, мы получим для отношения С : D примерно следующие числа: 3,13; 3,14; 3,15. Эти числа очень мало отличаются одно от другого.

    В математике путём теоретических соображений установлено, что искомое отношение  С : D никогда не меняется и оно равно бесконечной непериодической дроби, приближённое значение которой с точностью до десятитысячных долей равно 3,1416.

    Это значит, что всякая окружность длиннее своего диаметра в одно и то же число раз. Это число принято обозначать греческой буквой π (пи). Тогда отношение длины окружности к диаметру запишется так: С : D = π. Мы будем ограничивать это число только сотыми долями, т.

    е. брать π = 3,14.

    Напишем формулу для определения длины окружности.

    Так как С : D = π, то

    C = πD

    т. е. длина окружности равна произведению числа π на диаметр.

    Задача 1. Найти длину окружности (С) круглой комнаты, если диаметр её D = 5,5 м.

    Принимая во внимание изложенное выше, мы должны для решения этой задачи увеличить диаметр в 3,14 раза:

    5,5 • 3,14 = 17,27 {м).

    Задача 2. Найти радиус колеса, у которого длина окружности 125,6 см.

    Эта задача обратна предыдущей. Найдём диаметр колеса:

    125,6 : 3,14 = 40 (см).

    Найдём теперь радиус колеса:

    40 : 2 = 20 (см).

    2. Площадь круга. Чтобы определить площадь круга, можно было бы начертить на бумаге круг данного радиуса, покрыть его прозрачной клетчатой бумагой и потом сосчитать клетки, находящиеся внутри окружности (рис. 28).

    Но такой способ неудобен по многим причинам. Во-первых, вблизи контура круга получается ряд неполных клеток, о величине которых судить трудно. Во-вторых, нельзя покрыть листом бумаги большой предмет (круглую клумбу, бассейн, фонтан и др.).

    В-третьих, подсчитав клетки, мы всё-таки не получаем никакого правила, позволяющего нам решать другую подобную задачу. В силу этого поступим иначе.

    Сравним круг с какой-нибудь знакомой нам фигурой и сделаем это следующим образом: вырежем круг из бумаги, разрежем его сначала по диаметру пополам, затем каждую половину разрежем ещё пополам, каждую четверть — ещё пополам и т. д., пока не разрежем круг, например, на 32 части, имеющие форму зубцов (рис. 29).

    Затем сложим их так, как показано на рисунке 30, т. е. сначала расположим 16 зубцов в виде пилы, а затем в образовавшиеся отверстия вложим 15 зубцов и, наконец, последний оставшийся зубец разрежем по радиусу пополам и приложим одну часть слева, другую — справа. Тогда получится фигура, напоминающая прямоугольник.

    Длина этой фигуры (основание) равна приблизительно длине полуокружности, а высота — приблизительно радиусу. Тогда площадь такой фигуры можно найти  путём  умножения  чисел,   выражающих длину полуокружности и длину радиуса. Если обозначим площадь круга буквой S, длину окружности буквой С, радиус буквой r, то можем записать формулу для определения площади круга:

      ,

    которая читается так: площадь круга равна длине полуокружности, умноженной на радиус.

    Задача. Найти площадь круга, радиус которого равен 4 см. Найдём сначала длину окружности, потом длину полуокружности,  а затем умножим её на радиус.

    1)  Длина  окружности   С = π D = 3,14 • 8 = 25,12  (см).

    2)  Длина половины окружности C/2 = 25,12 : 2= 12,56 (см).

    3)  Площадь круга S = C/2 • r = 12,56 • 4 = 50,24 (кв. см).

    § 118. Поверхность и объём цилиндра.

    Задача   1. Найти полную поверхность цилиндра, у которого диаметр основания 20,6 см и высота 30,5 см.

    Форму цилиндра (рис. 31) имеют: ведро, стакан (не гранёный), кастрюля и множество других предметов.

    Полная поверхность цилиндра (как и полная поверхность прямоугольного параллелепипеда) состоит из боковой поверхности и площадей двух оснований (рис. 32).

    Чтобы наглядно представить себе, о чём идёт речь, необходимо аккуратно сделать модель цилиндра из бумаги. Если мы от этой модели отнимем два основания, т. е.

    два круга, а боковую поверхность разрежем вдоль и развернём, то будет совершенно ясно, как нужно вычислять полную поверхность цилиндра.

    Боковая поверхность развернётся в прямоугольник, основание которого равно длине окружности. Поэтому решение задачи будет иметь вид:

    1)  Длина   окружности:   20,6 • 3,14 = 64,684   (см).

    2)  Площадь боковой поверхности: 64,684 • 30,5= 1972,862(кв.см).

    3)  Площадь одного основания: 32,342 • 10,3 = 333,1226 (кв.см).

    4)  Полная    поверхность     цилиндра:     

    1972,862 + 333,1226 + 333,1226 = 2639,1072 (кв.  см) ≈ 2639 (кв.  см).

    Задача 2. Найти объём железной бочки, имеющей форму цилиндра с размерами: диаметр основания 60 см и высота 110 см.

    Чтобы вычислить объём цилиндра, нужно припомнить, как мы вычисляли объём прямоугольного параллелепипеда (полезно прочитать § 61).

    Единицей измерения объёма у нас будет кубический сантиметр. Сначала надо узнать, сколько кубических сантиметров можно расположить на площади основания, а затем найденное число умножить на высоту.

    Чтобы узнать, сколько кубических сантиметров можно уложить на площади основания, надо вычислить площадь основания цилиндра. Так как основанием служит круг, то нужно найти площадь круга. Затем для определения объёма умножить её на высоту. Решение задачи имеет вид:

    1)  Длина окружности: 60 • 3,14 = 188,4 (см).

    2)  Площадь круга:   94,2 • 30 = 2826 (кв. см).

    3)  Объём цилиндра:  2826 • 110 = 310 860 (куб.  см).

    Ответ.   Объём бочки 310,86 куб. дм.

    Если обозначим объём цилиндра буквой V, площадь основания S, высоту цилиндра H, то можно написать формулу для определения объёма цилиндра:

    V = S • H

    которая читается так: объём цилиндра равен площади основания, умноженной на высоту.

    § 119. Таблицы для вычисления длины окружности по диаметру.

    При решении различных производственных задач часто приходится вычислять длину окружности. Представим себе рабочего, который изготовляет круглые детали по указанным ему диаметрам.

    Он должен всякий раз, зная диаметр,   вычислить длину окружности.

    Чтобы сэкономить время и застраховать себя от ошибок, он обращается к готовым таблицам, в которых указаны диаметры и соответствующие им длины окружностей.

    Приведём небольшую часть таких таблиц   и  расскажем, как ими пользоваться.

    Пусть известно, что диаметр окружности равен 5 м. Ищем в таблице в вертикальном столбце под буквой D число 5. Это длина диаметра. Рядом с этим числом (вправо, в столбце под названием «Длина окружности») увидим число 15,708 (м). Совершенно так же найдём, что если D = 10 см, то длина окружности равна 31,416 см.

    По этим же таблицам можно производить и обратные вычисления. Если известна длина окружности, то можно найти в таблице соответствующий ей диаметр. Пусть длина окружности равна приблизительно 34,56 см. Найдём в таблице число, наиболее близкое к данному. Таковым будет 34,558 (разница 0,002). Соответствующий такой длине окружности диаметр равен приблизительно 11 см.

    Таблицы, о которых здесь сказано, имеются в различных справочниках. В частности, их можно найти в книжке «Четырёхзначные математические таблицы» В. М. Брадиса. и в задачнике по арифметике С. А.  Пономарёва и Н. И. Сырнева.

    R  ≈  7,85  =  7,85  =  1,25 (м)
    2 · 3,14 6,28

    Площадь круга

    Площадь круга равна произведению числа π на квадрат радиуса. Формула нахождения площади круга:

    S = πr2

    где S – площадь круга, а r – радиус круга.

    Так как диаметр круга равен удвоенному радиусу, то радиус равен диаметру, разделённому на 2:

    следовательно, формула нахождения площади круга через диаметр будет выглядеть так:

    S  =  π( D )2  =  π D2  =  π D2
    2 22 4

    Задачи на площадь круга

    Задача 1. Найти площадь круга, если его радиус равен 2 см.

    Так как площадь круга равна π умноженное на радиус в квадрате, то площадь круга с радиусом 2 см будет равна:

    S ≈ 3,14 · 22 = 3,14 · 4 = 12,56 (см2)

    Задача 2. Найти площадь круга, если его диаметр равен 7 см.

    Сначала найдём радиус круга, разделив его диаметр на 2:

    7 : 2 = 3,5 (см)

    теперь вычислим площадь круга по формуле:

    S = πr2 ≈ 3,14 · 3,52 = 3,14 · 12,25 = 38,465 (см2)

    Данную задачу можно решить и другим способом. Вместо того чтобы сначала находить радиус, можно воспользоваться формулой нахождения площади круга через диаметр:

    S  =  π D2  ≈  3,14 72  =  3,14 49  =  153,86  =  38,465 (см2)
    4 4 4 4

    Задача 3. Найти радиус круга, если его площадь равна 12,56 м2.

    Чтобы найти радиус круга по его площади, надо площадь круга разделить π, а затем из полученного результата извлечь квадратный корень:

    r = √S : π

    следовательно радиус будет равен:

    r ≈ √12,56 : 3,14 = √4 = 2 (м)

    Число π

    Длину окружности предметов, окружающих нас, можно измерить с помощью сантиметровой ленты или верёвки (нитки), длину которой потом можно померить отдельно.

    Но в некоторых случаях померить длину окружности трудно или практически невозможно, например, внутреннюю окружность бутылки или просто длину окружности начерченной на бумаге.

    В таких случаях можно вычислить длину окружности, если известна длина её диаметра или радиуса.

    Чтобы понять, как это можно сделать, возьмём несколько круглых предметов, у которых можно измерить и длину окружности и диаметр. Вычислим отношение длины к диаметру, в итоге получим следующий ряд чисел:

    Ведро Таз Бочка Тарелка Стакан
    Окружность 91 см 157 см 220 см 78,5 см 23,9 см
    Диаметр 29 см 50 см 70 см 25 см 7,6 см
    Отношение (с точн. до 0,01) 3,14 3,14 3,14 3,14 3,14

    Из этого можно сделать вывод, что отношение длины окружности к её диаметру это постоянная величина для каждой отдельной окружности и для всех окружностей в целом. Это отношение и обозначается буквой π.

    Используя эти знания, можно по радиусу или диаметру окружности находить её длину. Например, для вычисления длины окружности с радиусом 3 см нужно умножить радиус на 2 (так мы получим диаметр), а полученный диаметр умножить на π. В итоге, с помощью числа π мы узнали, что длина окружности с радиусом 3 см равна 18,84 см.

    Источник: https://naobumium.info/planimetriya/dlina_okruzhnosti.php

    __________________________________________

    novpedkolledg2.ru



    О сайте

    Онлайн-журнал "Автобайки" - первое на постсоветском пространстве издание, призванное осветить проблемы радовых автолюбителей с привлечение экспертов в области автомобилестроения, автоюристов, автомехаников. Вопросы и пожелания о работе сайта принимаются по адресу: Онлайн-журнал "Автобайки"