Как расставлять и как определить степень окисления элементов. Как степень окисления ставить

БЕСПЛАТНО ответим на Ваши вопросы
По лишению прав, ДТП, страховом возмещении, выезде на встречную полосу и пр. Ежедневно с 9.00 до 21.00
Москва и МО +7 (499) 938-51-97
С-Петербург и ЛО +7 (812) 467-32-86
Бесплатный звонок по России 8-800-350-23-69 доб.418

Как расставлять степени окисления?

Степень окисления — это величина, которая не имеет никакого физического смысла. Существует несколько определений понятия «степень окисления», однако, наиболее общее звучит следующим образом: степень окисления – это количественная оценка состояния атома химического элемента в соединении, основанная на его электроотрицательности.Степень окисления может принимать положительные и отрицательные значения. Чтобы указать степень окисления элемента в соединении нужно поставить сверху над его символом арабскую цифру с соответствующим знаком («+» или «-»).Определить значения степени окисления, по крайней мере, максимальное положительное и максимальное отрицательное, можно при помощи Периодической таблицы Д.И. Менделеева. «Высшая» степень окисления равна номеру группы, в которой расположен элемент, а «низшая» — разнице между значением «высшей» и числом 8.Отвечая на вопрос «как расставлять степени окисления», следует помнить о том, что степень окисления атомов в простых веществах равна нулю (, ), степень окисления фтора всегда равна -1. Степень окисления металлов всегда записывается со знаком «+» и для элементов IA, IIA и IIIA групп она постоянна и равна номеру группы. Степень окисления кислорода во всех соединениях (кроме пероксидов и оксида фтора) равна -2, а водорода +1 (кроме гидридов).Перейдем к веществам, указанным в задании. Степени окисления элементов, входящих в их состав будут равны: , , .

ru.solverbook.com

чему она равна и что это такое

В химических процессах главную роль играют атомы и молекулы, свойства которых определяют исход химических реакций. Одной из важных характеристик атома является окислительное число, которое упрощает метод учета переноса электронов в частице. Как определить степень окисления или формальный заряд частицы и какие правила необходимо знать для этого?

Содержание статьи

Определение

Любая химическая реакция обусловлена взаимодействием атомов различных веществ. От характеристик мельчайших частиц зависит процесс реакции и ее результат.

Термин окисление (оксидация) в химии означает реакцию, в ходе которой группа атомов или один из них теряют электроны или приобретают, в случае приобретения реакцию называют «восстановлением».

Степень окисления – это величина, которая измеряется количественно и характеризует перераспределяемые электроны в ходе реакции. Т.е. в процессе оксидации электроны в атоме уменьшаются или увеличиваются, перераспределяясь между другими взаимодействующими частицами, и уровень оксидации показывает, как именно они реорганизуются. Данное понятие тесно связано с электроотрицательностью частиц – их умением притягивать и отталкивать от себя свободные ионы.

Определение уровня оксидации зависит от характеристик и свойств конкретного вещества, поэтому нельзя однозначно назвать процедуру вычисления легкой или сложной, но ее результаты помогают условно записать процессы окислительно-восстановительных реакций. Следует понимать, что полученный результат вычислений является результатом учета переноса электронов и не имеет физического смысла, а также не является истинным зарядом ядра.

Важно знать! Неорганическая химия часто использует термин валентности вместо степени окисления элементов, это не является ошибкой, но следует учитывать, что второе понятие более универсальное.

Понятия и правила вычислений движения электронов являются основой для классификации химических веществ (номенклатура), описания их свойств и составления формул связи. Но наиболее часто данное понятие используется для описания и работы с окислительно-восстановительными реакциями.

Правила определения степени окисления

Как узнать степень окисления? При работе с окислительно-восстановительными реакциями важно знать, что формальный заряд частицы всегда будет равен величине электрона, выраженного в числовом значении. Эта особенность связана с тем предположением, что электронные пары, образующие связь, всегда полностью смещаются в сторону более отрицательных частиц. Следует понимать, что речь идет об ионных связях, а в случае реакции при ковалентной связи электроны будут делиться поровну между одинаковыми частицами.

Окислительное число может иметь как положительные, так и отрицательные значения. Все дело в том, что в процессе реакции атом должен стать нейтральным, а для этого нужно либо присоединить к иону некое количество электронов, если он положительный, либо отнять их, если он отрицательный. Для обозначения данного понятия при записи формулы обычно прописывают над обозначением элемента арабскую цифру с соответствующим знаком. Например,  или  и т.д.

Следует знать, что формальный заряд металлов всегда будет положительным, а в большинстве случаев, чтобы определить его, можно воспользоваться таблицей Менделеева. Существует ряд особенностей, которые необходимо учитывать, чтобы определять показатели правильно.

Как определить степень окисления

Степень оксидации:

  1. У простых элементов всегда равна нулю:  или .
  2. У фтора всегда будет равна -1.
  3. Как и у металлов, у элементов из групп IA, IIA и IIIA групп всегда одинаковая – это номер группы, в которой они расположены.
  4. У кислорода в любой связи равна -2, кроме связей с пероксидами (Н2О2), когда значение равно -1 и оксидом фтора (O+2F2-1, O2+1F2-1), когда она равна +2.
  5. У водорода всегда +1, кроме его взаимодействия с гидридами (Na+H- и связями по типу C+4h5-1).
  6. У простого вещества без связей с другими элементами всегда равна нулю.
  7. У простого иона с одним атомом равна числу его электрона (Na+, Ca+2).
  8. Если рассматривается связь двух веществ различной природы (металл и неметалл), то отрицательное окислительное число будет наблюдаться у вещества, которое обладает большей электроотрицательностью (H+F-, Cu+Br-), а положительное, соответственно, у элемента с электроотрицательностью больше нуля.
  9. У щелочных металлов, таких как литий, натрий, калий и прочих, всегда +1.
  10. У металлов из главной подгруппы II (магний, барий, кальций и стронций) равна +2.
  11. У алюминия всегда одинаковое значение — +3.

Запомнив эти особенности, достаточно просто будет определять окислительное число у элементов, независимо от сложности и количества уровней атомов.

Полезное видео: определение степени окисления

Как определить степень окисления

Периодическая таблица Менделеева содержит почти всю необходимую информацию для работы с химическими элементами. Например, школьники используют только ее для описания химических реакций. Так, чтобы определить максимальные положительные и отрицательные значения окислительного числа необходимо свериться с обозначением химического элемента в таблице:

  1. Максимально положительное – это номер группы, в которой находится элемент.
  2. Максимально отрицательная степень окисления – это разница между максимально положительной границей и числом 8.

Таким образом, достаточно просто узнать крайние границы формального заряда того или иного элемента. Такое действие можно совершить с помощью вычислений на основе таблицы Менделеева.

Важно знать! У одного элемента могут быть одновременно несколько различных показателей оксидации.

Различают два основных способа определения уровня оксидации, примеры которых представлены ниже. Первый из них – это способ, который требует знаний и умений применять законы химии. Как расставлять степени окисления с помощью этого способа?

Правило определения степеней окисления

Для этого необходимо:

  1. Определить, является ли данное вещество элементарным и находится ли оно вне связи. Если да, то его окислительное число будет равно 0, независимо от состава вещества (отдельные атомы или многоуровневые атомные соединения).
  2. Определить, состоит ли рассматриваемое вещество из ионов. Если да, то степень оксидации будет равна их заряду.
  3. Если рассматриваемое вещество металл, то посмотреть на показатели других веществ в формуле и вычислить показания металла путем арифметических действий.
  4. Если все соединение имеет один заряд (по сути это сумма всех частиц представленных элементов), то достаточно определить показатели простых веществ, затем вычесть их от общей суммы и получить данные металла.
  5. Если связь нейтральная, то общая сумма должна быть равна нулю.

Для примера можно рассмотреть объединение  с ионом алюминия, чей общий заряд равен нулю. Правила химии подтверждают тот факт, что ион Cl имеет окислительное число -1, а в данном случае их три в соединении. Значит ион Al должен быть равен +3, чтобы все соединение было нейтральным.

Этот способ весьма хорош, поскольку правильность решения всегда можно проверить, если сложить все уровни оксидации вместе.

Второй метод можно применять без знания химических законов:

  1. Найти данные частиц, по отношению к которым нет строгих правил и точное количество их электронов неизвестно (можно путем исключения).
  2. Выяснить показатели всех прочих частиц и после из общей суммы путем вычитания найти нужную частицу.

Рассмотрим второй метод на примере вещества Na2SO4, в котором не определен атом серы S, известно лишь, что он отличен от нуля.

Чтобы найти, чему равны все степени окисления необходимо:

  1. Найти известные элементы, помня о традиционных правилах и исключениях.
  2. Ион Na = +1, а каждый кислород = -2.
  3. Умножить количество частиц каждого вещества на их электроны и получить степени оксидации всех атомов, кроме одного.
  4. В Na2SO4 состоят 2 натрия и 4 кислорода, при умножении получается: 2 X +1 = 2 – это окислительное число всех частиц натрия и 4 X -2 = -8 – кислородов.
  5. Сложить полученные результаты 2+(-8) =-6 – это общий заряд соединения без частицы серы.
  6. Представить химическую запись в виде уравнения: сумма известных данных + неизвестное число = общий заряд.
  7. Na2SO4 представлено следующим образом: -6 + S = 0, S = 0 + 6, S = 6.

Таким образом, чтобы использовать второй метод, достаточно знать простые законы арифметики.

Таблица оксидации

Для простоты работы и вычисления показателей оксидации для каждого химического вещества используют специальные таблицы, где прописаны все данные.

Она выглядит следующим образом:

Полезное видео: учимся определять степень окисления по формулам

Вывод

Нахождение степени окисления для химического вещества – это простое действие, которое требует лишь внимательности и знания основных правил и исключений. Зная исключения и пользуясь специальными таблицами, это действие не будет занимать много времени.

Вконтакте

Facebook

Twitter

Google+

znaniya.guru

Как определить степень окисления? - материалы для подготовки к ЕГЭ по Химии

Автор - Александр Игоревич Новичков .

Степень окисления - это формальный заряд атома. Слово «формальный» означает, что этого заряда у атома в действительности может и не быть, вернее, он может оказаться немного другим. Однако по разным причинам эти условные заряды удобны и химики всего мира пользуются понятием «степень окисления».

Отметим, что степень окисления указывается в верхнем правом углу атома в формате или , где – целое число. Например:

Существуют определённые правила нахождения степени окисления.

    1. Степень окисления простых веществ равна нулю. Напомню, что простыми называют вещества, состоящие из одного вида атомов. Примеры:
    2. Некоторые атомы в сложных соединениях проявляют только одну степень окисления. Такие степени окисления называются постоянными.

- Исключения у водорода соединения , в которых у водорода степень окисления - Исключения у кислорода

    1. Сумма степеней окисления всех атомов сложного соединения должна быть равна нулю. Пользуясь именно эти правилом, мы будем расставлять степени окисления в сложных соединениях.Как именно?

Пример 1: расставьте степени окисления в соединении .Мы знаем степень окисления тогда мы можем найти, что общее количество «плюсов» у четырех атомов . Чтобы в сумме был ноль, у трех атомов заряд должен быть , значит у каждого атома

Пример 2: Найдите степени окисления всех атомов в соединении Сначала подпишем постоянные степени окисления

Посчитаем общее количество плюсов и минусов

Для того, чтобы плюсов и минусов было одинаковое количество у двух хромов в сумме должно быть , а значит, у каждого атома

Пример 3: Найдите степени окисления всех атомов в соединении Для начала заметим, что для нахождения степени окисления удобно «раскрыть скобки» и представить соединение как и тогда задание выполняется аналогично заданию из примера 2.Ответ:

    1. В некоторых устоявшихся группах атомов в составе веществ (кислотные остатки и ион аммония) степени окисления атомов неизменны и их тоже стоит запомнить.

Пользуясь этими правилами, можно расставить степени окисления практически во всех соединений, встречающихся на ЕГЭ по химии.

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)                        +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

ege-study.ru

Степени окисления - это какая величина? Как определить степень окисления элементов?

Такой предмет школьной программы как химия вызывает многочисленные затруднения у большинства современных школьников, мало кто может определить степень окисления в соединениях. Наибольшие сложности у школьников, которые изучают неорганическую химию, то есть учеников основной школы (8-9 классы). Непонимание предмета приводит к возникновению неприязни у школьников к данному предмету.

Педагоги выделяют целый ряд причин такой «нелюбви» учеников средних и старших классов к химии: нежелание разбираться в сложных химических терминах, неумение пользоваться алгоритмами для рассмотрения конкретного процесса, проблемы с математическими знаниями. Министерством образования РФ были внесены серьезные изменение в содержание предмета. К тому же "урезали" и количество часов на преподавание химии. Это негативно сказалось на качестве знаний по предмету, снижению интереса к изучению дисциплины.

Какие темы курса химии даются школьникам труднее всего?

По новой программе в курс учебной дисциплины «Химия» основной школы включено несколько серьезных тем: периодическая таблица элементов Д. И. Менделеева, классы неорганических веществ, ионный обмен. Труднее всего дается восьмиклассникам определение степени окисления оксидов.

Правила расстановки

Прежде всего ученики должны знать, что оксиды являются сложными двухэлементными соединениями, в состав которых включен кислород. Обязательным условием принадлежности бинарного соединения к классу оксидов является расположение кислорода вторым в данном соединении.

Рассчитать такой показатель в любых формулах данного класса получится, только если школьник владеет определенным алгоритмом.

Алгоритм для кислотных оксидов

Для начала заметим, что степени окисления это численные выражения валентности элементов. Кислотные оксиды образованы неметаллами либо металлами с валентностью от четырех до семи, вторым в таких оксидах обязательно стоит кислород.

В оксидах валентность кислорода всегда соответствует двум, определить ее можно по периодической таблице элементов Д. И. Менделеева. Такой типичный неметалл как кислород, находясь в 6 группе главной подгруппы таблицы Менделеева, принимает два электрона, чтобы полностью завершить свой внешний энергетический уровень. Неметаллы в соединениях с кислородом чаще всего проявляют высшую валентность, которая соответствует номеру самой группы. Важно напомнить, что степень окисления химических элементов это показатель, предполагающий положительное (отрицательное) число.

Неметалл, стоящий в начале формулы, обладает положительной степенью окисления. Неметалл кислород же в оксидах стабилен, его показатель -2. Для того чтобы проверить достоверность расстановки значений в кислотных окислах, придется перемножить все поставленные вами цифры на индексы у конкретного элемента. Расчеты считаются достоверными, если суммарный итог всех плюсов и минусов поставленных степеней получается 0.

Составление двухэлементных формул

Степень окисления атомов элементов дает шанс создавать и записывать соединения из двух элементов. При создании формулы, для начала оба символа прописывают рядом, обязательно вторым ставят кислород. Сверху над каждым из записанных знаков прописывают значения степеней окисления, затем между найденными числами находится то число, что будет без какого-либо остатка делиться на обе цифры. Данный показатель необходимо поделить по отдельности на числовое значение степени окисления, получая индексы для первого и второго компонентов двухэлементного вещества. Высшая степень окисления равна численно значению высшей валентности типичного неметалла, идентична номеру группы, где стоит неметалл в ПС.

Алгоритм постановки числовых значений в основных оксидах

Подобными соединениями считаются оксиды типичных металлов. Они во всех соединениях имеют показатель степени окисления не более +1 либо +2. Для того чтобы понять, какую будет иметь степень окисления металл, можно воспользоваться периодической системой. У металлов основных подгрупп первой группы, данный параметр всегда постоянный, он аналогичен номеру группы, то есть +1.

Металлы основной подгруппы второй группы также характеризуются стабильной степенью окисления, в цифровом выражении +2. Степени окисления оксидов в сумме с учетом их индексов (числа) должны давать нуль, поскольку химическая молекула считается нейтральной, лишенной заряда, частицей.

Расстановка степеней окисления в кислородсодержащих кислотах

Кислоты представляют собой сложные вещества, состоящими из одного или нескольких атомов водорода, которые связаны с каким-то кислотным остатком. Учитывая, что степени окисления это цифровые показатели, для их вычисления потребуются некоторые математические навыки. Такой показатель для водорода (протона) в кислотах всегда стабилен, составляет +1. Далее можно указать степень окисления для отрицательного иона кислорода, она также стабильная, -2.

Лишь только после этих действий, можно вычислять степень окисления у центрального компонента формулы. В качестве конкретного образца рассмотрим определение степени окисления элементов в серной кислоте h3SO4. Учитывая, что в молекуле данного сложного вещества содержится два протона водорода, 4 атома кислорода, получаем выражение такого вида +2+X-8=0. Для того чтобы в сумме образовывался ноль, у серы будет степень окисления +6

Расстановка степеней окисления в солях

Соли представляют собой сложные соединения, состоящие из ионов металла и одного либо нескольких кислотных остатков. Методика определения степеней окисления у каждого из составных частей в сложной соли такая же, как и в кислородсодержащих кислотах. Учитывая, что степень окисления элементов - это цифровой показатель, важно правильно обозначить степень окисления металла.

Если металл, образующий соль, располагается в главной подгруппе, его степень окисления будет стабильной, соответствует номеру группы, является положительной величиной. Если же в соли содержится металл подобной подгруппы ПС, проявляющий разные валентности, определить валентность металла можно по кислотному остатку. После того как установлена будет степень окисления металла, ставят степень окисления кислорода (-2), далее вычисляют степень окисления центрального элемента, воспользовавшись химическим уравнением.

В качестве примера рассмотрим определение степеней окисления у элементов в нитрате натрия (средней соли). NaNO3. Соль образована металлом главной подгруппы 1 группы, следовательно, степень окисления натрия будет +1. У кислорода в нитратах степень окисления составляет -2. Для определения численного значения степени окисления составляет уравнение +1+X-6=0. Решая данное уравнение, получаем, что X должен быть +5, это и есть степень окисления азота.

Основные термины в ОВР

Для окислительного, а также восстановительного процесса существуют специальные термины, которые обязаны выучить школьники.

Степень окисления атома это его непосредственная способность присоединять к себе (отдавать иным) электроны от каких-то ионов или же атомов.

Окислителем считают нейтральные атомы или заряженные ионы, в ходе химической реакции присоединяющие себе электроны.

Восстановителем станут незаряженные атомы или заряженные ионы, что в процессе химического взаимодействия теряют собственные электроны.

Окисление представляется как процедура отдачи электронов.

Восстановление связано с принятием дополнительных электронов незаряженным атомом или ионом.

Окислительно-восстановительны процессом характеризуется реакция, в ходе которой обязательно меняется степень окисления атома. Это определение позволяет понять, как можно определить, является ли реакция ОВР.

Правила разбора ОВР

Пользуясь данным алгоритмом, можно расставить коэффициенты в любой химической реакции.

  1. Для начала нужно расставить в каждом химическом веществе степени окисления. Учтите, что в простом веществе степень окисления равна нулю, так как отсутствует отдача (присоединение) отрицательных частичек. Правила расстановки степеней окисления в бинарных и трехэлементных веществ были нами рассмотрены выше.

  2. Затем нужно определить те атомы либо ионы, у которых в ходе произошедшего превращения, изменились степени окисления.

  3. Из левой части записанного уравнения выделяют атомы либо заряженные ионы, которые поменяли свои степени окисления. Это необходимо для составления баланса. Над элементами обязательно указывают их значения.

  4. Далее записываются те атомы либо ионы, которые образовались в ходе реакции, указывается знаком + количество принятых атомом электронов, - число отданных отрицательных частиц. Если после процесса взаимодействия уменьшаются степени окисления. Это означает, что электроны были приняты атомом (ионом). При повышении степени окисления атом (ион) в ходе реакции отдают электроны.

  5. Наименьшее общее число делят сначала на принятые, потом на отданные в процессе электроны, получают коэффициенты. Найденные цифры и будут искомыми стереохимическими коэффициентами.

  6. Определяют окислитель, восстановитель, процессы, протекающие в ходе реакции.

  7. Последним этапом будет расстановка стереохимических коэффициентов в рассматриваемой реакции.

    Пример ОВР

Рассмотрим практическое применение данного алгоритма на конкретной химической реакции.

Fe+CuSO4=Cu+FeSO4

Рассчитываем показатели у всех простых и сложных веществ.

Так как Fe и Cu являются простыми веществами, их степень окисления равна 0. В CuSO4, то Cu+2, тогда у кислорода-2, а у серы +6. В FeSO4: Fe +2, следовательно, для О-2, по расчетам S +6.

Теперь ищем элементы, что смогли поменять показатели, в нашей ситуации ими окажутся Fe и Cu.

Так как после реакции значение у атома железа стала +2, в реакции было отдано 2 электрона. Медь поменяла свои показатели с +2 до 0, следовательно, медь приняла 2 электрона. Теперь определяем количество принятых и отданных электронов атомом железа и катионом двухвалентной меди. В ходе превращения взято два электрона катионом двухвалентной меди, столько же электронов отдано атомом железа.

В данном процессе нет смысла определять минимальное общее кратное, поскольку принято и отдано в ходе превращения равное количество электронов. Стереохимические коэффициенты будут также соответствовать единице. В реакции свойства восстановителя будет проявлять железо, при этом оно окисляется. Катион двухвалентной меди восстанавливается до чистой меди, в реакции у нее высшая степень окисления.

Применение процессов

Формулы степени окисления должны быть известны каждому школьнику 8-9 класса, так как данный вопрос включен в задания ОГЭ. Любые процессы, которые протекают с окислительными, восстановительными признаками, играют важное значение в нашей жизни. Без них невозможны обменные процессы в организме человека.

fb.ru

Правила определения степени окисления, с примерами

Понятие степень окисления

Для характеристики состояния элементов в соединениях введено понятие степени окисления.

Положительная степень окисления обозначает число электронов, которые смещаются от данного атома, а отрицательная – число электронов, которые смещаются к данному атому.

Из этого определения следует, что в соединениях с неполярными связями степень окисления элементов равна нулю. Примерами таких соединений могут служить молекулы, состоящие из одинаковых атомов (N2, h3, Cl2).

Степень окисления металлов в элементарном состоянии равна нулю, так как распределение электронной плотности в них равномерно.

В простых ионных соединениях степень окисления входящих в них элементов равна электрическому заряду, поскольку при образовании этих соединений происходит практически полный переход электронов от одного атома к другому: Na+1I-1, Mg+2Cl-12, Al+3F-13, Zr+4Br-14.

При определении степени окисления элементов в соединениях с полярными ковалентными связями сравнивают значениях их электроотрицательностей. Поскольку при образовании химической связи электроны смещаются к атомам более электроотрицательных элементов, то последние имеют в соединениях отрицательную степень окисления.

Правила определения степени окисления

Чтобы определить степени окисления элементов, входящих в состав того или иного соединения, сначала необходимо разобраться с тем, для каких элементов эта величина точно известна.

Так, например, в соединениях с неполярными связями степень окисления элементов равна нулю. Примерами таких соединений могут служить молекулы, состоящие из одинаковых атомов (N2, h3, Cl2).

Степень окисления металлов в элементарном состоянии равна нулю, так как распределение электронной плотности в них равномерно.

В простых ионных соединениях степень окисления входящих в них элементов равна электрическому заряду, поскольку при образовании этих соединений происходит практически полный переход электронов от одного атома к другому: Na+1I-1, Mg+2Cl-12, Al+3F-13, Zr+4Br-14.

При определении степени окисления элементов в соединениях с полярными ковалентными связями сравнивают значениях их электроотрицательностей. Поскольку при образовании химической связи электроны смещаются к атомам более электроотрицательных элементов, то последние имеют в соединениях отрицательную степень окисления.

Фтор, характеризующийся наибольшим значением электроотрицательности, в соединениях всегда имеет постоянную отрицательную степень окисления (-1).

Для кислорода, также имеющего высокое значение электроотрицательности, характерна отрицательная степень окисления обычно (-2), в пероксидах (-1). Исключение составляет соединение состава OF2, в котором степень окисления кислорода равна (+2).

Щелочные и щелочноземельные элементы, для которых свойственно относительно невысокое значение электроотрицательности, всегда имеют положительную степень окисления, равную соответственно (+1) и (+2).

Постоянную степень окисления (+1) в большинстве соединений проявляет водород, напримерH+1Cl-1, H+12O-2, P-3H+13. Однако в гидридах степень окисления водорода – (-1), напримерLi+1H-1, Ca+2H-12.

Большинство элементов могут проявлять разную степень окисления в соединениях. При определении их степени окисления пользуются правилом, согласно которому сумма степеней окисления элементов в электронейтральных молекулах равна нулю, а в сложных ионах – заряду этих ионов. В качестве примера рассчитаем степень окисления азота в соединениях состава KNO2 и HNO3. Степень окисления водорода и щелочных металлов в соединениях равна (+), а степень окисления кислорода – (-2). Соответственно степень окисления азота равна:

KNO2 1+ x +2×(-2) = 0, x=+3.

HNO3 1+x+ x +3×(-2) = 0, x=+5.

Примеры решения задач

ru.solverbook.com

Как определить степень окисления. Определение степени окисления соединений

Задача по определению степени окисления может оказаться как простой формальностью, так и сложной головоломкой. В первую очередь, это будет зависеть от формулы химического соединения, а также наличия элементарных знаний по химии и математике.

Зная основные правила и алгоритм последовательно-логичных действий, о которых пойдет речь в данной статье, при решении задач подобного типа, каждый с легкостью сможет справиться с этим заданием. А потренировавшись и научившись определять степени окисления разноплановых химических соединений, можно смело браться за уравнивание сложных окислительно-восстановительных реакций методом составления электронного баланса.

1

Понятие степени окисления

Чтобы научиться определять степень окисления, для начала необходимо разобраться, что это понятие означает?

  • Степень окисления применяют при записи в окислительно-восстановительных реакциях, когда происходит передача электронов от атома к атому.
  • Степень окисления фиксирует количество перенесенных электронов, обозначая условный заряд атома.
  • Степень окисления и валентность зачастую тождественны.

Данное обозначение пишется сверху химического элемента, в его правом углу, и представляет собой целое число со знаком «+» или «-». Нулевое значение степени окисления знака не несет.

2

Правила определения степени окисления

Рассмотрим основные каноны определения степени окисления:

  • Простые элементарные вещества, то есть те, которые состоят из одного вида атомов, всегда будут иметь нулевую степень окисления. Например, Na0, H02, P04
  • Существует ряд атомов, имеющих всегда одну, постоянную, степень окисления. Приведенные в таблице значения лучше запомнить.
Элемент  Характерная степень окисления Исключения
H +1 Гидриды металлов: LіH-1
O -2 O+2F2, пероксиды (h3O2-1), надпероксиды (КО2-1), озониды (КО3-1)
F -1
Al +3
Be, Mg, Ca, Sr, Ba, Ra +2
Li, Na, K, Rb, Cs, Fr +1
  • Как видно, исключение бывает лишь у водорода в соединении с металлами, где он приобретает не свойственную ему степень окисления «-1».
  • Кислород также принимает степень окисления «+2» в химическом соединении с фтором и «-1» в составах перекисей, надперекисей или озонидов, где атомы кислорода соединены друг с другом.

  • Ионы металлов имеют несколько значений степени окисления (причем только положительные), поэтому ее определяют по соседним элементам в соединении. Например, в FeCl3, хлор имеет степень окисления «-1», у него 3 атома, значит умножаем -1 на 3, получаем «-3». Чтобы в сумме степеней окисления соединения получась «0», железо должно иметь степень окисления «+3». В формуле FeCl2, железо, соответственно, изменит свою степень на «+2».
  • Математически суммируя степени окисления всех атомов в формуле (с учетом знаков), всегда должно получаться нулевое значение. Например, в соляной кислоте H+1Cl-1 (+1 и -1 = 0), а в сернистой кислоте h3+1S+4O3-2(+1 * 2 = +2 у водорода,+4 у серы и -2 * 3 = – 6 у кислорода; в сумме +6 и -6 дают 0).
  • Степень окисления одноатомного иона будет равна его заряду. Например: Na+, Ca+2.
  • Наивысшая степень окисления, как правило, соотносится с номером группы в периодической системе Д.И.Менделеева.

3

Алгоритм действий определения степени окисления

Порядок нахождения степени окисления не сложен, но требует внимания и выполнения определенных действий.

Задача: расставить степени окисления в соединении KMnO4

  • Первый элемент – калий, имеет постоянную степень окисления «+1».Для проверки можно посмотреть в периодическую систему, где калий находится в 1 группе элементов.
  • Из оставшихся двух элементов, кислород, как правило, принимает степень окисления «-2».
  • Получаем следующую формулу: К+1MnхO4-2. Остается определить степень окисления марганца.Итак, х – неизвестная нам степень окисления марганца. Теперь важно обратить внимание на количество атомов в соединении.Количество атомов калия – 1, марганца – 1, кислорода – 4.С учетом электронейтральности молекулы, когда общий (суммарный) заряд равен нулю,

1*(+1) + 1*(х) + 4(-2) = 0,+1+1х+(-8) = 0,-7+1х = 0,(при переносе меняем знак)1х = +7, х = +7

Таким образом, степень окисления марганца в соединении равна «+7».

Задача: расставить степени окисления в соединении Fe2O3.

  • Кислород, как известно, имеет степень окисления «-2» и выступает окислителем. С учетом количества атомов (3), в сумме у кислорода получается значение «-6» (-2*3= -6), т.е. умножаем степень окисления на количество атомов.
  • Чтобы уравновесить формулу и привести к нулю, 2 атома железа будут иметь степень окисления «+3» (2*+3=+6).
  • В сумме получаем ноль (-6 и +6 = 0).

Задача: расставить степени окисления в соединении Al(NO3)3.

  • Атом алюминия – один и имеет постоянную степень окисления «+3».
  • Атомов кислорода в молекуле – 9 (3*3), степень окисления кислорода, как известно «-2», значит, умножая эти значения, получаем «-18».
  • Осталось уровнять отрицательные и положительные значения, определив таким образом степень окисления азота. -18 и +3, не хватает + 15. А учитывая, что имеется 3 атома азота, легко определить его степень окисления: 15 делим на 3 и получаем 5.
  • Степень окисления азота «+5», а формула будет иметь вид: Al+3(N+5O-23)3
  • Если сложно таким способом определять искомое значение, можно составлять и решать уравнения:

1*(+3) + 3х + 9*(-2) = 0.+3+3х-18=03х=15х=5

Итак, степень окисления – достаточно важное понятие в химии, символизирующее состояние атомов в молекуле.Без знания определенных положений или основ, позволяющих правильно определять степень окисления, невозможно справиться с выполнением этой задачи. Следовательно, вывод один: досконально ознакомиться и изучить правила нахождения степени окисления, четко и лаконично представленные в статье, и смело двигаться дальше по нелегкой стезе химических премудростей.

 

sovetclub.ru

Таблица степени окисления химических элементов

Порядковый номер

Русское / англ. название

Химический символ

Степень окисления

1

Водород / Hydrogen

H

(+1), (-1)

2

Гелий / Helium

He

0

3

Литий / Lithium

Li

(+1)

4

Бериллий / Beryllium

Be

(+2)

5

Бор / Boron

B

(-1), 0, (+1), (+2), (+3)

6

Углерод / Carbon

C

(-4), (-3), (-2), (-1), 0, (+2), (+4)

7

Азот / Nitrogen

N

(-3), (-2), (-1), 0, (+1), (+2), (+3), (+4), (+5)

8

Кислород / Oxygen

O

(-2), (-1), 0, (+1), (+2)

9

Фтор / Fluorine

F

(-1)

10

Неон / Neon

Ne

0

11

Натрий / Sodium

Na

(+1)

12

Магний / Magnesium

Mg

(+2)

13

Алюминий / Aluminum

Al

(+3)

14

Кремний / Silicon

Si

(-4), 0, (+2), (+4)

15

Фосфор / Phosphorus

P

(-3), 0, (+3), (+5)

16

Сера / Sulfur

S

(-2), 0, (+4), (+6)

17

Хлор / Chlorine

Cl

(-1), 0, (+1), (+3), (+5), (+7), редко (+2) и (+4)

18

Аргон / Argon

Ar

0

19

Калий / Potassium

K

(+1)

20

Кальций / Calcium

Ca

(+2)

21

Скандий / Scandium

Sc

(+3)

22

Титан / Titanium

Ti

(+2), (+3), (+4)

23

Ванадий / Vanadium

V

(+2), (+3), (+4), (+5)

24

Хром / Chromium

Cr

(+2), (+3), (+6)

25

Марганец / Manganese

Mn

(+2), (+3), (+4), (+6), (+7)

26

Железо / Iron

Fe

(+2), (+3), редко (+4) и (+6)

27

Кобальт / Cobalt

Co

(+2), (+3), редко (+4)

28

Никель / Nickel

Ni

(+2), редко (+1), (+3) и (+4)

29

Медь / Copper

Cu

+1, +2, редко (+3)

30

Цинк / Zinc

Zn

(+2)

31

Галлий / Gallium

Ga

(+3), редко (+2)

32

Германий / Germanium

Ge

(-4), (+2), (+4)

33

Мышьяк / Arsenic

As

(-3), (+3), (+5), редко (+2)

34

Селен / Selenium

Se

(-2), (+4), (+6), редко (+2)

35

Бром / Bromine

Br

(-1), (+1), (+5), редко (+3), (+4)

36

Криптон / Krypton

Kr

0

37

Рубидий / Rubidium

Rb

(+1)

38

Стронций / Strontium

Sr

(+2)

39

Иттрий / Yttrium

Y

(+3)

40

Цирконий / Zirconium

Zr

(+4), редко (+2) и (+3)

41

Ниобий / Niobium

Nb

(+3), (+5), редко (+2) и (+4)

42

Молибден / Molybdenum

Mo

(+3), (+6), редко (+2), (+3) и (+5)

43

Технеций / Technetium

Tc

(+6)

44

Рутений / Ruthenium

Ru

(+3), (+4), (+8), редко (+2), (+6) и (+7)

45

Родий / Rhodium

Rh

(+4), редко (+2), (+3) и (+6)

46

Палладий / Palladium

Pd

(+2), (+4), редко (+6)

47

Серебро / Silver

Ag

(+1), редко (+2) и (+3)

48

Кадмий / Cadmium

Cd

(+2), редко (+1)

49

Индий / Indium

In

(+3), редко (+1) и (+2)

50

Олово / Tin

Sn

(+2), (+4)

51

Сурьма / Antimony

Sb

(-3), (+3), (+5), редко (+4)

52

Теллур / Tellurium

Te

(-2), (+4), (+6), редко (+2)

53

Иод / Iodine

I

(-1), (+1), (+5), (+7), редко (+3), (+4)

54

Ксенон / Xenon

Xe

0

55

Цезий / Cesium

Cs

(+1)

56

Барий / Barium

BA

(+2)

57

Лантан / Lanthanum

La

(+3)

58

Церий / Cerium

Ce

(+3), (+4)

59

Празеодим / Praseodymium

Pr

(+3)

60

Неодим / Neodymium

Nd

(+3), (+4)

61

Прометий / Promethium

Pm

(+3)

62

Самарий / Samarium

Sm

(+3), редко (+2)

63

Европий / Europium

Eu

(+3), редко (+2)

64

Гадолиний / Gadolinium

Gd

(+3)

65

Тербий / Terbium

Tb

(+3), (+4)

66

Диспрозий / Dysprosium

Dy

(+3)

67

Гольмий / Holmium

Ho

(+3)

68

Эрбий / Erbium

Er

(+3)

69

Тулий / Thulium

Tm

(+3), редко (+2)

70

Иттербий / Ytterbium

Ib

(+3), редко (+2)

71

Лютеций / Lutetium

Lu

(+3)

72

Гафний / Hafnium

Hf

(+4)

73

Тантал / Tantalum

Ta

(+5), редко (+3), (+4)

74

Вольфрам / Tungsten

W

(+6), редко (+2), (+3), (+4) и (+5)

75

Рений / Rhenium

Re

(+2), (+4), (+6), (+7), редко (-1), (+1), (+3), (+5)

76

Осмий / Osmium

Os

(+3), (+4), (+6), (+8), редко (+2)

77

Иридий / Iridium

Ir

(+3), (+4), (+6), редко (+1) и (+2)

78

Платина / Platinum

Pt

(+2), (+4), (+6), редко (+1) и (+3)

79

Золото / Gold

Au

(+1), (+3), редко (+2)

80

Ртуть / Mercury

Hg

(+1), (+2)

81

Талий / Thallium

Tl

(+1), (+3), редко (+2)

82

Свинец / Lead

Pb

(+2), (+4)

83

Висмут / Bismuth

Bi

(+3), редко (+3), (+2), (+4) и (+5)

84

Полоний / Polonium

Po

(+2), (+4), редко (-2) и (+6)

85

Астат / Astatine

At

86

Радон / Radon

Ra

0

87

Франций / Francium

Fr

88

Радий / Radium

Ra

(+2)

89

Актиний / Actinium

Ac

(+3)

90

Торий / Thorium

Th

(+4)

91

Проактиний / Protactinium

Pa

(+5)

92

Уран / Uranium

U

(+3), (+4), (+6), редко (+2) и (+5)

ru.solverbook.com



О сайте

Онлайн-журнал "Автобайки" - первое на постсоветском пространстве издание, призванное осветить проблемы радовых автолюбителей с привлечение экспертов в области автомобилестроения, автоюристов, автомехаников. Вопросы и пожелания о работе сайта принимаются по адресу: Онлайн-журнал "Автобайки"