Деление дробей, формула. Как поделить дробь на смешанную дробь


Деление дробей | Математика

Деление дробей — тема, которая включает в себя действия с обыкновенными дробями, смешанными числами и десятичными дробями.

Запишем на одной странице все правила, касающиеся деления обыкновенных дробей, смешанных чисел и натуральных чисел.

1. Деление обыкновенных дробей.

Чтобы разделить дробь на дробь, надо делимое умножить на число, обратное делителю.

(то есть первую дробь нужно переписать без изменений и умножить её на «перевёрнутую» вторую дробь).

   

При умножении дробей проще сокращать множители, чем результат.

Если в результате получается неправильная дробь, нужно выделить из неё целую часть.

Примеры деления обыкновенных дробей:

   

   

   

2. Деление обыкновенной дроби на натуральное число.

Применив правило деления обыкновенных дробей

   

приходим к выводу:

Чтобы разделить дробь на натуральное число, надо знаменатель умножить на это число, а числитель оставить без изменения.

Примеры деления обыкновенной дроби на число:

   

   

   

Заметим, что если числитель дроби делится на число без остатка, при делении можно числитель разделить на число, а знаменатель оставить тем же:

   

   

Стоит ли запоминать ещё одно правило или использовать одно правило для всех случаев — решать вам.

3. Деление натурального числа на дробь.

Применив правило деления обыкновенных дробей

   

приходим к выводу:

чтобы разделить натуральное число на дробь, надо в числитель записать произведения этого числа и знаменателя, а в знаменатель записать числитель.

   

Можно запомнить это правило и применять его в дальнейшем. А можно делить число на дробь, применяя для всех случаев деления дробей одно правило. Выбирайте, что для вас удобнее.

Примеры деления натурального числа на дробь:

   

   

   

Здесь можно сделать ещё один вывод:

   

4. Деление смешанных чисел.

Чтобы разделить смешанные числа (смешанные дроби), надо превратить их в неправильные дроби и разделить по правилу деления обыкновенных дробей:

   

(эту формулу запоминать не надо. Достаточно знать, как  переводить смешанные дроби в неправильные и делить обыкновенные дроби).

Примеры деления смешанных дробей:

   

   

   

Примеры деления смешанного числа и обыкновенной дроби:

   

   

В следующий раз рассмотрим все правила, касающиеся деления десятичных дробей.

www.for6cl.uznateshe.ru

Деление дробей

Деление обыкновенных дробей

Чтобы разделить две дроби нужно выполнить следующие шаги:

  • 1 Перевернуть вторую дробь(поменять числитель и знаменатель местами) и умножить полученные дроби . Следующие шаги, 2-4, в точности повторяют процесс умножения дробей.
  • 2 Перемножить числители дробей между собой 5 × 4 = 20.
  • 3 Перемножить знаменатели дробей между собой 8 × 3 = 24.
  • 4 Сократим полученную дробь , в результате получим .

Деление обыкновенных дробей можно записать в виде:

При деление дробей не имеет значения, имеют ли они одинаковый знаменатель или разный.

Пример Выполните деление дробей

.

Чтобы проверить результат деления дробей, можно воспользоваться калькулятором дробей.

Пример Разделить дроби .

.

Деление дроби на число

Чтобы разделить дробь на число, нужно умножить знаменатель на числитель, а числитель оставить без изменения, затем сократить дробь.

Пример Разделим дробь на число

.

Основное свойство дроби

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

calcs.su

Деление дробей | Формулы с примерами

Деление правильных дробей

Определение Чтобы разделить дробь на целое число, нужно преобразовать целое число в дробь (1), полученную дробь перевернуть (2) и умножить на первую дробь (3).

Иными словами: чтобы разделить дробь на целое число, нужно числитель оставить прежним, а знаменатель исходной дроби умножить на данное число.

Пример 35 :  33= 35 :  31 =  35 •  13 =  3 • 15 • 3 =   3 15 =  15;

89 :  43= 89 :  41 =  89 •  14 =  8 • 19 • 4 =   8 36 =   2 9;

15 :  43= 15 :  41 =  15 •  14 =  1 • 15 • 4 =   1 20.

Правило Чтобы разделить одну правильную дробь на другую, нужно также применить умножение на обратную дробь.

Пример 47 :  14 =  47 •  41 =  4 • 47 • 1 =  167 =  227;

68 :  36 =  68 •  63 =  6 • 68 • 3 =  3624 =  112;

79 :  47 =  79 •  74 =  7 • 79 • 4 =  4936 =  11336.

Деление смешанных дробей

Определение Чтобы разделить смешанные дроби, сначала нужно преобразовать их в неправельные (1), а затем перевернуть вторую дробь (2) и умножить на первую (3).

Пример 243 :  314 =  2 • 3 + 43 :  3 • 4 + 14 =  103 :  134 =  103 •  413 =  4039 =  1 1 39;

113 :  212 =  1 • 3 + 13 :  2 • 2 + 12 =  43 :  52 =  43 •  25 =   8 15;

352 :  514 =  3 • 2 + 52 :  5 • 4 + 14 =  112 :  214 =  112 •   4 21 =  4442 =  2221 =  1 1 21.

Обратная дробь

Правило Дробь  ba - обратная к дроби  ab.

Дроби  ab и  ba - взаимно обратные дроби.

Пример (взаимно обратные) 34 и  43;

72 и  27;

125 и   5 12.

formula-xyz.ru

Деление дробей. Правила. Примеры. | tutomath

Следующее действие, которое можно выполнять с дробями это деление. Выполнять деление дробей достаточно просто главное знать несколько правил деления. Разберем правила деления и рассмотрим решение примеров на данную тему.

Деление дроби на дробь.

Чтобы делить дробь на дробь, нужно дробь, которая является делителем перевернуть, то есть получить обратную дробь делителю и потом выполнить умножение дробей.

\(\bf \frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}\\\)

Пример:

Выполните деление обыкновенных дробей  .

Деление дроби на число.

Чтобы разделить дробь на число, нужно знаменатель дроби умножить на число.

\(\bf \frac{a}{b} \div n = \frac{a}{b} \div \frac{n}{1} = \frac{a}{b} \times \frac{1}{n}\\\)

Рассмотрим пример:

Выполните деления дроби на натуральное число \(\frac{4}{7} \div 3\).

Как мы уже знаем, что любое число можно представить в виде дроби \(3 = \frac{3}{1} \).

\(\frac{4}{7} \div 3 = \frac{4}{7} \div \frac{3}{1} = \frac{4}{7} \times \frac{1}{3} = \frac{4 \times 1}{7 \times 3} = \frac{4}{21}\\\)

Деление числа на дробь.

Чтобы поделить число на дробь, нужно знаменатель делителя умножить на число, а числитель делителя записать в знаменатель. То есть дробь делитель перевернуть.

Рассмотрим пример:

Выполните деление числа на дробь.

Деление смешанных дробей.

Перед тем как приступить к делению смешанных дробей, их нужно перевести в неправильную дробь, а дальше выполнить деление по правилу деления дроби на дробь.

Пример:

Выполните деление смешанных дробей.

\(2\frac{3}{4} \div 3\frac{1}{6} = \frac{11}{4} \div \color{red} {\frac{19}{6}} = \frac{11}{4} \times \color{red} {\frac{6}{19}} = \frac{11 \times 6}{4 \times 19} = \frac{11 \times \color{red} {2} \times 3}{2 \times \color{red} {2} \times 19} = \frac{33}{38}\\\)

Деление числа на число.

Чтобы поделить простые числа, нужно представить их в виде дроби  и выполнить деление по правилам деления дроби на дробь.

Пример:

\(2 \div 5 = \frac{2}{1} \div \color{red} {\frac{5}{1}} = \frac{2}{1} \times \color{red} {\frac{1}{5}} = \frac{2 \times 1}{1 \times 5} = \frac{2}{5}\\\)

Примечание к теме деление дробей:На нуль делить нельзя.

Вопросы по теме:Как делить дроби? Как разделить дробь на дробь?Ответ: дроби делятся так, первую дробь делимое умножаем на дробь обратную дроби делителя.

Как делить дроби с разными знаменателями?Ответ: не важно одинаковые или разные знаменатели у дробей, все дроби делятся по правилу деления дроби на дробь.

Пример №1:Выполните деление и назовите делитель, дробь, обратную делителю: а) \(\frac{5}{9} \div \frac{8}{13}\) б) \(2\frac{4}{5} \div 1\frac{7}{8}\)

Решение:а) \(\frac{5}{9} \div \frac{8}{13} = \frac{5}{9} \times \frac{13}{8} = \frac{65}{72}\\\\\)

\( \frac{8}{13}\) – делитель, \( \frac{13}{8}\) – обратная дробь делителя.

б) \(2\frac{4}{5} \div 1\frac{7}{8} = \frac{14}{5} \div \frac{15}{8} = \frac{14}{5} \times \frac{8}{15} = \frac{14 \times 8}{5 \times 15} = \frac{112}{75} = 1\frac{37}{75}\\\\\)

\( \frac{15}{8}\) – делитель, \( \frac{8}{15}\) – обратная дробь делителя.

Пример №2:Вычислите деление: а) \(5 \div 1\frac{1}{4}\) б) \(9\frac{2}{3} \div 8\)

Решение:

а) \(5 \div 1\frac{1}{4} = \frac{5}{1} \div \frac{5}{4} = \frac{5}{1} \times \frac{4}{5} = \frac{\color{red} {5} \times 4}{1 \times \color{red} {5}} = \frac{4}{1} = 4 \\\\\)

б) \(9\frac{2}{3} \div 8 = \frac{29}{3} \div \frac{8}{1} = \frac{29}{3} \times \frac{1}{8} = \frac{29 \times 1}{3 \times 8} = \frac{29}{24} = 1\frac{5}{24}\\\\\)

tutomath.ru

Как делить дроби?

Для решения различных заданий из курса математики, физики приходится производить деление дробей. Это сделать очень легко, если знать определенные правила выполнения этого математического действия.

Прежде чем перейти к формулированию правило том, как делить дроби, давайте вспомним некоторые математические термины:

  1. Верхняя часть дроби называется числителем, а нижняя – знаменателем.
  2. При делении числа называются так: делимое : делитель = частное

Как делить дроби: простые дроби

Для выполнения деления двух простых дробей следует умножить делимое на дробь, обратную делителю. Эту дробь по-другому называют еще перевернутой, потому что она получается в результате замены местами числителя и знаменателя. Например:

3/77 : 1/11 = 3 /77 * 11 /1 = 3/7

Как делить дроби: смешанные дроби

Если нам предстоит разделить смешанные дроби, то здесь тоже все достаточно просто и понятно. Сначала переводим смешанную дробь в обычную неправильную дробь. Для этого умножаем знаменатель такой дроби на целое число и числитель прибавляем к полученному произведению. В итоге мы получили новый числитель смешанной дроби, а знаменатель ее останется без изменения. Дальше деление дробей будет осуществляться точно так же, как и деление простых дробей. Например:

10 2/3 : 4/15 = 32/3 : 4/15 = 32/3 * 15 /4 = 40/1 = 40

Как делить дробь на число

Для того чтобы разделить простую дробь на число, последнее следует написать в виде дроби (неправильной). Это сделать очень легко: на месте числителя пишется это число, а знаменатель такой дроби равен единице. Дальше деление выполняется обычным способом. Рассмотрим это на примере:

5/11 : 7 = 5/11 : 7/1 = 5/11 * 1/7 = 5/77

Как делить десятичные дроби

Нередко взрослый человек испытывает затруднения при необходимости без помощи калькулятора разделить целое число или десятичную дробь на десятичную дробь.

Итак, чтобы выполнить деление десятичных дробей, нужно в делителе просто зачеркнуть запятую и перестать обращать на нее внимание. В делимом запятую нужно передвинуть вправо ровно на столько знаков, сколько было в дробной части делителя, при необходимости дописывая нули. И дальше производят обычное деление на целое число. Чтобы это стало более понятно,

elhow.ru

Как делить дроби | Математика

Чтобы понять, как делить дроби, изучим правило и на примерах рассмотрим, как его применять.

Правило деления обыкновенных дробей

Чтобы разделить две дроби, надо первое число умножить на число, обратное ко второму (то есть первую дробь умножаем на перевернутую вторую).

Примеры деления обыкновенных дробей:

   

Чтобы разделить эти дроби, первую дробь переписываем и умножаем на дробь, обратную ко второй (делимое умножаем на число, обратное делителю). Сократить здесь ничего нельзя. 

   

   

Чтобы разделить данные дроби, первое число переписываем без изменений и умножаем на число, обратное ко второму. Сокращаем 6 и 9 на 3, 20 и 25 — на 5. Полученная в результате дробь 8/15 — правильная и несократимая. Значит, это — окончательный ответ.

   

   

Первую дробь оставляем без изменений и умножаем на число, обратное ко второй дроби. Сокращаем 45 и 36 на 9, 65 и 52 — на 13. В результате получили неправильную дробь, из которой выделяем целую часть.

   

При деление двух равных чисел получаем единицу, поэтому сразу можем записать ответ.

   

   

Чтобы разделить дроби, первую умножаем на число, обратное ко второму. Сокращаем 23 и 23 на 23, 14 и 7 — на 7. Поскольку в знаменателе стоит единица, ответ — целое число.

В следующий раз рассмотрим, как разделить целое число на дробь.

www.for6cl.uznateshe.ru

Как разделить дробь на смешанное число.

выдели его целую часть (прокатывает с неправельной дробью)

смешанных чисел не бывает. Бывают смешанные дроби. Надо эту дробь привести по известному правилу к неправильной и поделить. Например, 5/4:2 1/2=5/4:5/2=5/4*2/5=1/2

Смешанную дробь превратить в неправильную знаменатель дроби умножить на целую часть к полученному произведению прибавить числитель! А затем уже делить но не забудьте перевернуть только что получившуюся из смешанной дроби не правильную дробь !

1) Представить смешанное число (дробь) в виде неправильной дроби. 2) Умножить дробь на число обратное делителю (на перевернутую неправильную дробь) 7/9: 2 1/3=1/3 1) 2 1/3=( 2*3+1)/3=7/3 2) 7/9:7/3=7/9*3/7=7*3/9*7=1/3

touch.otvet.mail.ru



О сайте

Онлайн-журнал "Автобайки" - первое на постсоветском пространстве издание, призванное осветить проблемы радовых автолюбителей с привлечение экспертов в области автомобилестроения, автоюристов, автомехаников. Вопросы и пожелания о работе сайта принимаются по адресу: Онлайн-журнал "Автобайки"