Как переводить из десятичной системы счисления в двоичную. Как перевести числа из десятичной системы счисления в двоичную

БЕСПЛАТНО ответим на Ваши вопросы
По лишению прав, ДТП, страховом возмещении, выезде на встречную полосу и пр. Ежедневно с 9.00 до 21.00
Москва и МО +7 (499) 938-51-97
С-Петербург и ЛО +7 (812) 467-32-86
Бесплатный звонок по России 8-800-350-23-69 доб.418

Как переводить из десятичной системы счисления в двоичную

Десятичная (основанная на десяти) система счисления имеет 10 возможных значений (0,1,2,3,4,5,6,7,8 или 9) для каждого поместного значения. Двоичная система счисления (основанная на двух), в свою очередь, имеет два возможных значения каждого поместного значения – 0 или 1. Так как двоичная система является внутренним языком компьютеров, то серьезные программисты должны понимать, как переводить из десятичной системы счисления в двоичную, о чем вам и расскажет данная статья.

Способы представления чисел

Двоичные (binary) числа – каждая цифра означает значение одного бита (0 или 1), старший бит всегда пишется слева, после числа ставится буква «b». Для удобства восприятия тетрады могут быть разделены пробелами. Например, 1010 0101b.Шестнадцатеричные (hexadecimal) числа – каждая тетрада представляется одним символом 0…9, А, В, …, F. Обозначаться такое представление может по-разному, здесь используется только символ «h» после последней шестнадцатеричной цифры. Например, A5h. В текстах программ это же число может обозначаться и как 0хА5, и как 0A5h, в зависимости от синтаксиса языка программирования. Незначащий ноль (0) добавляется слева от старшей шестнадцатеричной цифры, изображаемой буквой, чтобы различать числа и символические имена.Десятичные (decimal) числа – каждый байт (слово, двойное слово) представляется обычным числом, а признак десятичного представления (букву «d») обычно опускают. Байт из предыдущих примеров имеет десятичное значение 165. В отличие от двоичной и шестнадцатеричной формы записи, по десятичной трудно в уме определить значение каждого бита, что иногда приходится делать.Восьмеричные (octal) числа – каждая тройка бит (разделение начинается с младшего) записывается в виде цифры 0–7, в конце ставится признак «о». То же самое число будет записано как 245о. Восьмеричная система неудобна тем, что байт невозможно разделить поровну.

Алгоритм перевода чисел из одной системы счисления в другую

Перевод целых десятичных чисел в любую другую системы счисления осуществляется делением числа на основание новой системы счисления до тех пор, пока в остатке не останется число меньшее основания новой системы счис­ления. Новое число записывается в виде остатков деления, начиная с последнего.Перевод правильной десятичной дроби в другую ПСС осуществляется умножением только дробной части числа на основание новой системы счисления до тех пор пока в дробной части не останутся все нули или пока не будет достигнута заданная точность перевода. В результате выполнения каждой операции умножения формируется одна цифра нового числа начиная со старшего.Перевод неправильной дроби осуществляется по 1 и 2 правилу. Целую и дробную часть записывают вместе, отделяя запятой.

ПРИМЕР №1.

Перевод из 2 в 8 в 16 системы счисления.Эти системы кратны двум, следовательно, перевод осуществляется с использованием таблицы соответствия (см. ниже).

Для перевода числа из двоичной системы счисления в восьмиричную (шестнадцатиричную) необходимо от запятой вправо и влево разбить двоичное число на группы по три (четыре – для шестнадцатиричной) разряда, дополняя при необходимости нулями крайние группы. Каждую группу заменяют соответствующей восьмиричной или шестнадцатиричной цифрой.

ПРИМЕР №2. 1010111010,1011 = 1.010.111.010,101.1 = 1272,518здесь 001=1; 010=2; 111=7; 010=2; 101=5; 001=1

При переводе в шестнадцатеричную систему необходимо делить число на части, по четыре цифры, соблюдая те же правила.ПРИМЕР №3. 1010111010,1011 = 10.1011.1010,1011 = 2B12,13HEXздесь 0010=2; 1011=B; 1010=12; 1011=13

Перевод чисел из 2, 8 и 16 в десятичную систему исчисления производят путем разбивания числа на отдельные и умножения его на основание системы (из которой переводится число) возведенное в степень соответствующую его порядковому номеру в переводимом числе. При этом числа нумеруются влево от запятой (первое число имеет номер 0) с возрастанием, а в правую сторону с убыванием (т.е. с отрицательным знаком). Полученные результаты складываются.

ПРИМЕР №4.

Еще раз повторим алгоритм перевода чисел из одной системы счисления в другую ПСС

  1. Из десятичной системы счисления:
    • разделить число на основание переводимой системы счисления;
    • найти остаток от деления целой части числа;
    • записать все остатки от деления в обратном порядке;
  2. Из двоичной системы счисления
    • Для перевода в десятичную систему счисления необходимо найти сумму произведений основания 2 на соответствующую степень разряда;
    • Для перевода числа в восьмеричную необходимо разбить число на триады.Например, 1000110 = 1 000 110 = 1068
    • Для перевода числа из двоичной системы счисления в шестнадцатеричную необходимо разбить число на группы по 4 разряда.Например, 1000110 = 100 0110 = 4616

Позиционной называется система, для которой значимость или вес цифры зависит от ее места расположения в числе. Соотношение между системами выражается таблицей.Таблица соответствия систем счисления:

Двоичная СС Шестнадцатеричная СС
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

Таблица для перевода в восьмеричную систему счисления

Двоичная СС Восьмеричная СС
000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

bichka.info

Как перевести число из десятичной системы в двоичную — правила и формулы | Праздник

Переводим число из десятичной системы в двоичную — правила и формулы.

Десятичная система – это наиболее распространенная система счисления, которой мы привыкли пользоваться каждый день. Ее основанием является число 10, которое делит числа на разряды: 1 разряд – числа от 1 до 9, второй разряд – от 10 до 99 и т.д.

Аналогично десятичной, двоичная система использует в основании число 2 и состоит из символов 0 и 1. Она применяется на всех компьютерах и устройствах, в которых используются цифровые электронные схемы. В двоичной системе можно выполнять все те же математические действия, что и в десятичной, но при этом каждое число будет состоять из 0 и 1.

В качестве примера попробуем перевести число из десятичной системы в двоичную.

Перевод целого числа

  • Для перевода числа из десятичной единицы в двоичную, число нужно поделить на основание системы, то есть на 2. В этом случае у вас получится либо целое частное, либо с остатком 1.
  • Если число четное, и остатка нет, запишите «0», если остаток есть – «1». Удобнее всего записывать остаток в столбик, чтобы не запутаться.
  • Вновь разделите частное на 2 и запишите «1» или «0».
  • Продолжайте делить, пока не дойдете до нуля в частном (последнее действие будет 1:2=0(,5), в остатке 1)
  • После запишите числа в обратном порядке (первой цифрой будет последняя «1»).

Перевод дробного числа

Дробные числа переводятся в два этапа: сперва целая часть, затем дробная.

  • Переведите целую часть по схеме, указанной выше.
  • Чтобы перевести дробную часть, ее нужно умножают на число основания – 2. Удобнее производить вычисление в столбик.
  • Умножите число на 2 и выделите целую часть: 0 или 1.
  • Вновь умножите дробную часть на 2 и выделите целую часть.

При вычислении целая часть в умножении не участвует. Пример:0,375*2=0,750.0,750*2= 1,500 (целая часть не участвует в дальнейшем умножении).0,500*2=1,000.

  • Запишите число в прямом порядке.
  • Напишите целое число до запятой, дробную – после.

Перевод из десятичной системы в двоичную завершен. Число в двоичной системе будет состоять из большого числа цифр, даже если число в десятичной системе состоит всего из двух цифр.

getonholiday.com

Как перевести число из десятичной в двоичную систему и обратно?

В повседневной жизни мы привыкли пользоваться десятичной системой счисления, знакомой нам еще со школьной скамьи. Однако помимо нее, существует и множество других систем. Как записывать цифры не в десятичной, а, например, в двоичной системе?

Как перевести в двоичную любое число из десятичной системы

Необходимость перевести десятичное число в двоичный вид выглядит пугающей только на первый взгляд. На самом деле это довольно просто — необязательно искать даже онлайн-сервисы для совершения операции.

  • Для образца возьмем число 156, записанное в привычной нам десятичной форме, и попробуем перевести его в двоичный вид.
  • Алгоритм будет выглядеть следующим образом — начальное число понадобится разделить на два, затем еще раз на 2, и еще раз на 2 до тех пор, пока в ответе не останется единица.
  • При совершении деления для перевода в двоичный код имеют значения не целые числа — а остатки. Если при делении в ответе получилось четное число, то остаток записывается в виде цифры 0, если нечетное — то в виде цифры 1.
  • На практике можно легко убедиться, что начальный двоичный ряд остатков для числа 156 будет выглядеть следующим образом — 00111001. Для того, чтобы превратить его в полноценный двоичный код, этот ряд понадобится записать в обратном порядке — то есть, 10011100.

Двоичное число 10011100, полученное в результате нехитрой операции, и будет двоичным выражением числа 156.

Ещё один пример, но уже на картинке

Перевод двоичного числа в десятичную систему

Обратный перевод — из двоичной в десятичную систему — может показаться чуть более сложным. Но если использовать простой метод удвоения, то и с этой задачей получится справиться за пару минут. Для примера возьмем все то же число, 156, но в двоичном виде — 10011100.

  • Метод удвоения основан на том, что при каждом шаге вычисления берут так называемый предыдущий итог и прибавляют к нему следующую цифру.
  • Поскольку на первом шаге предыдущего итога еще не существует, здесь всегда берут 0, удваивают его и прибавляют к нему первую цифру выражения. В нашем примере это будет 0 * 2 + 1 = 1.
  • На втором шаге мы уже располагаем предыдущим итогом — он равен 1. Это цифру нужно удвоить, а потом прибавить к ней следующую по порядку, то есть — 1 * 2 + 0 = 2.
  • На третьем, четвертом и последующем шагах все так же берутся предыдущие итоги и складываются с последующей цифрой в выражении.

Когда в двоичной записи останется только одна последняя цифра, и прибавлять больше будет нечего, операция будет завершена. При помощи нехитрой проверки можно убедиться, что в ответе получится нужное десятичное число 156.

Похожие статьи

infoogle.ru

Как перевести число из десятичной системы в двоичную

Десятичная система – это наиболее распространенная система счисления, которой мы привыкли пользоваться каждый день. Ее основанием является число 10, которое делит числа на разряды: 1 разряд – числа от 1 до 9, второй разряд – от 10 до 99 и т.д.

Аналогично десятичной, двоичная система использует в основании число 2 и состоит из символов 0 и 1. Она применяется на всех компьютерах и устройствах, в которых используются цифровые электронные схемы. В двоичной системе можно выполнять все те же математические действия, что и в десятичной, но при этом каждое число будет состоять из 0 и 1.

В качестве примера попробуем перевести число из десятичной системы в двоичную.

Быстрая навигация по статье

Перевод целого числа

  • Для перевода числа из десятичной единицы в двоичную, число нужно поделить на основание системы, то есть на 2. В этом случае у вас получится либо целое частное, либо с остатком 1.
  • Если число четное, и остатка нет, запишите «0», если остаток есть – «1». Удобнее всего записывать остаток в столбик, чтобы не запутаться.
  • Вновь разделите частное на 2 и запишите «1» или «0».
  • Продолжайте делить, пока не дойдете до нуля в частном (последнее действие будет 1:2=0(,5), в остатке 1)
  • После запишите числа в обратном порядке (первой цифрой будет последняя «1»).

Перевод дробного числа

Дробные числа переводятся в два этапа: сперва целая часть, затем дробная.

  • Переведите целую часть по схеме, указанной выше.
  • Чтобы перевести дробную часть, ее нужно умножают на число основания — 2. Удобнее производить вычисление в столбик.
  • Умножите число на 2 и выделите целую часть: 0 или 1.
  • Вновь умножите дробную часть на 2 и выделите целую часть.

При вычислении целая часть в умножении не участвует. Пример:0,375*2=0,750.0,750*2= 1,500 (целая часть не участвует в дальнейшем умножении).0,500*2=1,000.

  • Запишите число в прямом порядке.
  • Напишите целое число до запятой, дробную – после.

Перевод из десятичной системы в двоичную завершен. Число в двоичной системе будет состоять из большого числа цифр, даже если число в десятичной системе состоит всего из двух цифр.

Поделитесь этой статьёй с друзьями в соц. сетях:

podskajem.com

как перевести обычное число в двоичную систему? и наоборот. с примером плиз

Чтобы перевести число из одной системы в другую систему, нужно применить алгоритм Евклида. В двоичную - делишь число на 2, и выписавыешь остатки - 0 и 1, пока не дойдешь до числа 0. Например, 84 : 2 = 42 (ост. 0) 42 : 2 = 21 (ост. 0) 21 : 2 = 10 (ост 1) 10 : 2 = 5 (ост. 0) 5 : 2 = 2 (ост. 1) 2 : 2 = 1 (ост. 0) 1 : 2 = 0 (ост. 1) Собираем число из остатков, начиная с последнего. 84 (10) = 1010100 (2) Обратный перевод - нужно сложить степени 2, которые соответствуют единицам, начиная с 0-ой степени в правом разряде. У нас 7 цифр, значит самый старший разряд соответствует 2^6. Складываем: 1*2^6 + 0*2^5 + 1*2^4 + 0*2^3 + 1*2^2 + 0*2^1 + 0*2^0 = 2^6 + 2^4 + 2^2 = 64 + 16 + 4 = 84 Всё правильно.

Обычное - это какое? Десятичное? Десятичное - 1024 Двоичное - 10000000000 Восьмеричное - 2000 Шеснадцатиричное - 400 Десятичное - 1000 Двоичное - 1111101000 Восьмеричное - 1750 Шеснадцатиричное - 0x3E8

С помощью стандартного виндовского калькулятора!

Всё очень просто <img src="//content.foto.my.mail.ru/bk/tarakan28502/_animated/i-32.gif" > Объясняю пример: 11 делишь на 2 (система счисления двоичная) получаем 5. 5 умножаем на 2 получаем 10. 11 - 10 = 1 (первое число есть) теперь мы уже 5 делим на 2 получаем 2. 2 на 2 = 4. 5-4=1 (это уже следующее число) 2 делим на 2 = 1 (ещё одно число) . 1 умножаем на 2 равно 2. 2-2=0 (и ещё оно число) следуя картинке у нас получается число 11 в десятичной системе и 1011 в двоичной. ТОесть ты должен остатки (цифры что внизу) прочитать в обратном порядке и это и будет твой двоичный код) ) Кстати так можно перевести число в абсолютно любую систему счисления просто надо делить на то чилсо которое равно системе счисления, например восьмеричная делишь на 8 и т. д. Но таким образом можно переводить только из десятичной, что бы перевести из шестнадцатиричной в восмеричную, сначало нужно перевести шестнадцатиричную в десятичную, а уже из неё в восьмеричную, вот такая вот буйда))

1.По формуле 2.Делением

touch.otvet.mail.ru

как перевести число 28,375 из десятичной системы счисления в двоичную систему счисления?

Преобразование дробных десятичных чисел в двоичные Перевод дробного числа из десятичной системы счисления в двоичную осуществляется по следующему алгоритму: Вначале переводится целая часть десятичной дроби в двоичную систему счисления; Затем дробная часть десятичной дроби умножается на основание двоичной системы счисления; В полученном произведении выделяется целая часть, которая принимается в качестве значения первого после запятой разряда числа в двоичной системе счисления; Алгоритм завершается, если дробная часть полученного произведения равна нулю или если достигнута требуемая точность вычислений. В противном случае вычисления продолжаются с предыдущего шага. Пример: Требуется перевести дробное десятичное число 206,116 в дробное двоичное число. Перевод целой части дает 20610=110011102 по ранее описанным алгоритмам; дробную часть умножаем на основание 2, занося целые части произведения в разряды после запятой искомого дробного двоичного числа: .116 • 2 = 0.232 .232 • 2 = 0.464 .464 • 2 = 0.928 .928 • 2 = 1.856 .856 • 2 = 1.712 .712 • 2 = 1.424 .424 • 2 = 0.848 .848 • 2 = 1.696 .696 • 2 = 1.392 .392 • 2 = 0.784 и т. д. Получим: 206,11610=11001110,00011101102

нужно столбиком делить постоянно на 2, пока в итоге не останется 1 или 0, и записать остатки в обратном порядке 28375= 110111011010111 в двоичной

touch.otvet.mail.ru

Правила перевода из десятичной в двоичную систему.

Для перевода десятичного числа в двоичную систему отдельно переводят дробную и целую части.

Чтобы перевести целое число из 10-ой в 2-ую систему нужно выполнять последовательное деление числа на 2 до тех пор, пока результат не станет меньше 2. Последний результат и остатки от деления, взятые в обратном порядке дают двоичное число.

Например:

           
         
       
       
       
       
       
         
             
               

В результате .

Для перевода правильной дроби из 10-й системы счисления в 2-ю систему счисления нужно умножить исходную дробь и дробные части получающихся произведений на основание 2, представленное в старой 10-системе. Целые части получающихся произведений дают последовательность цифр, которая является представлением дроби в 2-ой системе счисления.

Правила перевода из двоичной в десятичную систему.

Для перевода необходимо разложить число по основанию системы счисления и посчитать результат.

Например,

Подробно>>

Выполнение арифметических операций в двоичной системе. Подробнее>>

В компьютерах двоичная система особенно удобна тем, что двоичные цифры соответствуют тому, что электронная система может находиться лишь в одном из двух состояний – либо “выключено” (цепь разомкнута, двоичная цифра 0), либо “включено” (цепь замкнута, двоичная цифра 1). Числа, записанные в двоичной системе, требуют большего числа знаков, чем их аналоги в десятичной системе, но при проектировании компьютеров, предназначенных для работы с числами, не превышающими 10 миллионов, оказалось, что легче оперировать с 24-разрядными двоичными числами (т.е. 24 реле или переключателя типа “вкл.” – “выкл.”), чем с семизначными десятичными числами (реле или переключателями, которые могут находиться в 10 состояниях). И в двоичной, и в десятичной системе суть состоит в позиционном принципе записи чисел, поэтому ясно, что современные суперкомпьютеры стали возможны благодаря тому, что четыре тысячи лет назад в Месопотамии было совершено важнейшее открытие в области обозначения чисел.

Системы счисления, родственные двоичной

На ранних этапах развития вычислительной техники программы писали в машинных кодах, то есть без использования языков программирования. Для обозначение кодов операций машина оперирует с довольно длинными двоичными числами. Программисту трудно было работать с таким количеством знаков. Поэтому стали использовать системы счисления, которые с одной стороны относительно малозначны. А с другой обеспечивают легкий перевод чисел в двоичную систему и обратно. Такими системами являются системы, родственные двоичной.

Система называется родственной двоичной, если ее основание является степенью числа 2. К таким системам относятся четверичная, восьмеричная и шестнадцатеричная.

Восьмеричная система счисления является вспомогательной системой представления информации в памяти компьютера и используется для компактной записи двоичных чисел и команд.

В системе счисления с основанием 8 используются цифры: 0, 1, 2, 3, 4, 5, 6, 7.

Над числами в восьмеричной системе счисления можно выполнять арифметические действия.

Подробнее>>

Элементы комбинаторики

обратно

Пусть имеется множество, состоящее из n элементов. Обозначим его . Перестановкой из n элементов называется заданный порядок во множестве .

Примеры перестановок:

1)распределение n различных должностей среди n человек;

2)расположение n различных предметов в одном ряду.

Сколько различных перестановок можно образовать во множестве ? Число перестановок обозначается Pn (читается“Р из n”).

Чтобы вывести формулу числа перестановок, представим себе n ячеек, пронумерованных числами 1,2,...n. Все перестановки будем образовывать, располагая элементы Unв этих ячейках. В первую ячейку можно занести любой из n элементов (иначе: первую ячейку можно заполнить n различными способами). Заполнив первую ячейку, можно найти n–1 вариантов заполнения второй ячейки. Таким образом, существует n(n–1) вариантов заполнения двух первых ячеек. При заполнении первых двух ячеек можно найти n–2 варианта заполнения третьей ячейки, откуда получается, что три ячейки можно заполнить n(n-1)(n-2) способами. Продолжая этот процесс, получим, что число способов заполнения n ячеек равно . Отсюда

Pn = n(n – 1)(n – 2)...× 3× 2× 1

Число n(n – 1)(n – 2)...× 3× 2× 1, то есть произведение всех натуральных чисел от 1 до n, называется “n-факториал” и обозначается n! Отсюда Pn =n!

По определению считается: 1!=1; 0!=1.

Пример. Сколько существует вариантов замещения 5-ти различных вакантных должностей 5-ю кандидатами?

.

Размещениями из n элементов по k элементов будем называть упорядоченные подмножества, состоящие из k элементов множества (множества, состоящего из n элементов). Число размещений из n элементов по k элементов обозначается (читается “А из n по k”).

Одно размещение из n элементов по k элементов может отличаться от другого как набором элементов, так и порядком их расположения.

Примеры задач, приводящих к необходимости подсчета числа размещений

1) Сколькими способами можно выбрать из 15 человек 5 кандидатов и назначить их на 5 различных должностей?

2) Сколькими способами можно из 20 книг отобрать 12 и расставить их в ряд на полке?

В задачах о размещениях полагается k<n. В случае, если k=n, то легко получить

Для подсчета используем тот же метод, что использовался для подсчета Pn, только здесь возьмем лишь k ячеек. Первую ячейку можно заполнить n способами, вторую, при заполненной первой, можно заполнить n–1 способами. Таким образом, существует п(п–1) вариантов заполнения первых двух ячеек. Можно продолжать этот процесс до заполнения последней k–й ячейки. Эту ячейку при заполненных первых k–1 ячейках можно заполнить n–(k–1) (или n–k+1) способами. Таким образом, все k ячеек заполняются числом способов, равным

Отсюда получаем:

Пример. Сколько существует различных вариантов выбора 4-х кандидатур из 9-ти специалистов для поездки в 4 различных страны?

Сочетаниями из n элементов по k элементов называются подмножества, состоящие из k элементов множества (множества, состоящего из n элементов).

Одно сочетание от другого отличается только составом выбранных элементов (но не порядком их расположения, как у размещений).

Число сочетаний из n элементов по k элементов обозначается (читается “C из n по k”).

Примеры задач, приводящих к подсчету числа сочетаний:

1) Сколько существует вариантов выбора 6-ти человек из 15 кандидатов для назначения на работу в одинаковых должностях?

2) Сколькими способами можно из 20 книг отобрать 12 книг?

Выведем формулу для подсчета числа сочетаний. Пусть имеется множество и нужно образовать упорядоченное подмножество множества , содержащее k элементов (то есть образовать размещение). Делаем это так:

1) выделим какие-либо k элементов из n элементов множества Это, согласно сказанному выше, можно сделать способами;

2) упорядочим выделенные k элементов, что можно сделать способами. Всего можно получить вариантов (упорядоченных подмножеств), откуда следует: , то есть

(1)

Пример: 6 человек из 15 можно выбрать числом способов, равным

Несложно понять, что осуществить выбор подмножества из т элементов множества, насчитывающего п элементов, можно, выбрав п–т элементов, которые не войдут в интересующее нас подмножество. Отсюда следует свойство числа сочетаний

Эту формулу можно доказать, используя формулу (1).

Задачи на подсчет числа подмножеств конечного множества называются комбинаторными. Рассмотрим некоторые комбинаторные задачи.

1. Из семи заводов организация должна выбрать три для размещения трех различных заказов. Сколькими способами можно разместить заказы?

Так как из условия ясно, что каждый завод может либо получить один заказ, либо не получить ни одного, и что выбрав три завода, можно по-разному разместить среди них заказы, здесь нужно считать число размещений

2. Если из текста задачи 1 убрать условие различия трех заказов, сохранив все остальные условия, получим другую задачу. Теперь способ размещения заказов определяется только выбором тройки заводов, так как все эти заводы получат одинаковые заказы, и число вариантов определяется как число сочетаний.

3. Имеются 7 заводов. Сколькими способами организация может разместить на них три различных производственных заказа? (Заказ нельзя дробить, то есть распределять его на нескольких заводах).

В отличие от условия первой задачи, здесь организация может отдать все три заказа первому заводу или, например, отдать два заказа второму заводу, а один –- седьмому.

Задача решается так. Первый заказ может быть помещен семью различными способами (на первом заводе, на втором и т.д.). Поместив первый заказ, имеем семь вариантов помещения второго (иначе, каждый способ помещения первого заказа может сопровождаться семью способами помещения второго). Таким образом, существует 7× 7=49 способов размещения первых двух заказов. Разместив их каким-либо образом, можем найти 7 вариантов помещения третьего (иначе, каждый способ размещения первых двух заказов может сопровождаться семью различными способами помещения третьего заказа). Следовательно, существуют 49× 7=73 способов размещения трех заказов. (Если бы заказов было n, то получилось бы 7n способов размещения).

4.Как решать задачу 3, если в ее тексте вместо слов “различных производственных заказа” поставить “одинаковых производственных заказа”? Это трудная задача. Ниже приводится аналогичная задача– Задача 5 с решением.

5.Добавим к условию задачи 1 одну фразу: организация также должна распределить три различных заказа на изготовление деревянных перекрытий среди 4-х лесопилок. Сколькими способами могут быть распределены все заказы?

Каждый из способов распределения заказов на заводах может сопровождаться способами размещения заказов на лесопилках. Общее число возможных способов размещения всех заказов будет равно

6. Риэлтерская фирма предлагает на продажу 5 больших квартир и 4 малогабаритных квартиры. Банк намеревается купить 4 квартиры, причём среди них не должно быть более двух малогабаритных. Сколько вариантов выбора имеет банк?

Банк может купить 4 большие квартиры. У него есть возможность выбрать 4 из 5-ти предлагаемых квартир, и число вариантов здесь равно . Если банк решит купить три большие квартиры и одну малогабаритную, то число вариантов выбора у него будет равно . Если будет принято решение купить две малогабаритных квартиры и две больших квартиры, то число вариантов будет равным . Таким образом, у банка есть 105 вариантов выбора.

Читайте также:

lektsia.com



О сайте

Онлайн-журнал "Автобайки" - первое на постсоветском пространстве издание, призванное осветить проблемы радовых автолюбителей с привлечение экспертов в области автомобилестроения, автоюристов, автомехаников. Вопросы и пожелания о работе сайта принимаются по адресу: Онлайн-журнал "Автобайки"