Химия, Биология, подготовка к ГИА и ЕГЭ. Как отличить сильное основание от слабого


Кислоты и основания - Электронный учебник K-tree

После прочтения статьи Вы сможете разделять вещества на соли, кислоты и основания. В статье описано, что такое pH раствора, какими общими свойствами обладают кислоты и основания.

Как металлы и неметаллы, кислоты и основания - это разделение веществ по схожим свойствам. Первая теория кислот и оснований принадлежала швецкому учёному Аррениусу. Кислота по Аррениусу - это класс веществ, которые в реакции с водой диссоциируют (распадаются), образовывая катион водорода H+. Основания Аррениуса в водном растворе образуют анионы OH-. Следующая теория в 1923 году была предложена учёными Бренстедом и Лоури. Теория Бренстеда-Лоури определяет кислотами вещества, способные в реакции отдавать протон (протоном в реакциях называют катион водорода). Основания, соответственно, - это вещества, способные принять протон в реакции. Актуальная на данный момент теория - теория Льюиса. Теория Льюиса определяет кислоты как молекулы или ионы, способные принимать электронные пары, тем самым формируя аддукты Льюиса (аддукт - это соединение, образующееся соединением двух реагентов без образования побочных продуктов).

В неорганической химии, как правило, под кислотой имеют ввиду кислоту Бренстеда-Лоури, то есть вещества, способные отдать протон. Если имеют ввиду определение кислоты по Льюису, то в тексте такую кислоту называют кислотой Льюиса. Данные правила справедливы для кислот и оснований.

Диссоциация

Диссоциация – это процесс распада вещества на ионы в растворах или расплавах. Например, диссоциация соляной кислоты - это распад HCl на H+ и Cl-.

Свойства кислот и оснований

Кислоты, содержащие водород, в водном растворе выделяют катионы водорода. Основания, содержащие гидроксид-ион, в водном растворе выделяют анион OH-.

Основания, как правило, мыльные на ощупь, кислоты, в большинстве своём, имеют кислый вкус.

При реакции основания со многими катионами формируется осадок. При реакции кислоты с анионами, как правило, выделяется газ.

Часто используемые кислоты: h3O, h4O+, Ch4CO2H, h3SO4, HSO4−, HCl, Ch4OH, Nh4 Часто используемые основания: OH−, h3O, Ch4CO2−, HSO4−, SO42−, Cl−

Сильные и слабые кислоты и основания

Сильные кислоты

Такие кислоты, которые полностью диссоциируют в воде, производя катионы водорода H+ и анионы. Пример сильной кислоты - соляная кислота HCl:

HCl(р-р) + h3O(ж) → h4O+(р-р) + Cl-(р-р)

Примеры сильных кислот: HCl, HBr, HF, HNO3, h3SO4, HClO4

Список сильных кислот
  • HCl - соляная кислота
  • HBr - бромоводород
  • HI - йодоводород
  • HNO3 - азотная кислота
  • HClO4 - хлорная кислота
  • h3SO4 - серная кислота

Слабые кислоты

Растворяются в воде только частично, например, HF:

HF(р-р) + h3O(ж) → h4O+(р-р) + F-(р-р) - в такой реакции более 90% кислоты не диссоциирует: [h4O+]=[F-] < 0,01M для вещества 0,1М

Сильную и слабую кислоту можно различить измеряя проводимость растворов: проводимость зависит от количества ионов, чем сильнее кислота тем она более диссоциирована, поэтому чем сильнее кислота тем выше проводимость.

Список слабых кислот
  • HF фтороводородная
  • h4PO4 фосфорная
  • h3SO3 сернистая
  • h3S сероводородная
  • h3CO3 угольная
  • h3SiO3 кремниевая

Сильные основания

Сильные основания полностью диссоциируют в воде:

NaOH(р-р) + h3O ↔ Nh5

К сильным основаниям относятся гидроксиды металлов первой (алкалины, щелочные металы) и второй (алкалинотеррены, щёлочноземельные металлы) группы.

Список сильных оснований
  • NaOH гидроксид натрия (едкий натр)
  • KOH гидроксид калия (едкое кали)
  • LiOH гидроксид лития
  • Ba(OH)2 гидроксид бария
  • Ca(OH)2 гидроксид кальция (гашеная известь)

Слабые основания

В обратимой реакции в присутствии воды образует ионы OH-:

Nh4 (р-р) + h3O ↔ NH+4 (р-р) + OH-(р-р)

Большинство слабых оснований - это анионы:

F-(р-р) + h3O ↔ HF(р-р) + OH-(р-р)
Список слабых оснований
  • Mg(OH)2 гидроксид магния
  • Fe(OH)2 гидроксид железа (II)
  • Zn(OH)2 гидроксид цинка
  • Nh5OH гидроксид аммония
  • Fe(OH)3 гидроксид железа (III)

Реакции кислот и оснований

Сильная кислота и сильное основание

Такая реакция называется нейтрализацией: при количестве реагентов достаточном для полной диссоциации кислоты и основания, результирующий раствор будет нейтральным.

Пример: h4O+ + OH- ↔ 2h3O
Слабое основание и слабая кислота
Общий вид реакции: Слабое основание(р-р) + h3O ↔ Слабая кислота(р-р) + OH-(р-р)
Сильное основание и слабая кислота

Основание полностью диссоциирует, кислота диссоциирует частично, результирующий раствор имеет слабые свойства основания:

HX(р-р) + OH-(р-р) ↔ h3O + X-(р-р)
Сильная кислота и слабое основание

Кислота полностью диссоциирует, основание диссоциирует не полностью:

Nh4 (р-р) + H+ ↔ Nh5

Диссоциация воды

Диссоциация - это распад вещества на составляющие молекулы. Свойства кислоты или основания зависят от равновесия, которое присутствует в воде:

h3O + h3O ↔ h4O+(р-р) + OH-(р-р)Kc = [h4O+][OH-]/[h3O]2Константа равновесия воды при t=25°: Kc = 1.83⋅10-6, также имеет место следующее равенство: [h4O+][OH-] = 10-14, что называется константой диссоциации воды. Для чистой воды [h4O+] = [OH-] = 10-7, откуда -lg[h4O] = 7.0.

Данная величина (-lg[h4O]) называется pH - потенциал водорода. Если pH < 7, то вещество имеет кислотные свойства, если pH > 7, то вещество имеет основные свойства.

Способы определения pH

Инструментальный метод

Специальный прибор pH-метр - устройство, трансформирующее концентрацию протонов в растворе в электрический сигнал.

Индикаторы

Вещество, которое изменяет цвет в некотором интервале значений pH в зависимости от кислотности раствора, используя несколько индикаторов можно добиться достаточно точного результата.

Соль

Соль - это ионное соединение образованное катионом отличным от H+ и анионом отличным от O2-. В слабом водном растворе соли полностью диссоциируют.

Что бы определить кислотно-щелочные свойства раствора соли, необходимо определить, какие ионы присутствуют в растворе и рассмотреть их свойства: нейтральные ионы, образованные из сильных кислот и оснований не влияют на pH: не отдают ионы ни H+, ни OH- в воде. Например, Cl-, NO-3, SO2-4, Li+, Na+, K+.

Анионы, образованные из слабых кислот, проявляют щелочные свойства (F-, Ch4COO-, CO2-3), катионов с щелочными свойствами не существует.

Все катионы кроме металлов первой и второй группы имеют кислотные свойства.

Буфферный раствор

Растворы, которые сохраняют уровень pH при добавлении небольшого количества сильной кислоты или сильного основания, в основном состоят из:

  • Смесь слабой кислоты, соответствующей соли и слабого основания
  • Слабое основание, соответствующая соль и сильная кислота

Для подготовки буфферного раствора определённой кислотности необходимо смешать слабую кислоту или основание с соответствующей солью, при этом необходимо учесть:

  • Интервал pH в котором буфферный раствор будет эффективен
  • Ёмкость раствора - количество сильной кислоты или сильного основания, которые можно добавить не повлияв на pH раствора
  • Не должно происходить нежелаемых реакций, которые могут изменить состав раствор

Тест:

k-tree.ru

Сильные, слабые кислоты и основания. Свойства

Сильные кислоты. Основания и свойства

Все кислоты, их свойства и основания делятся на сильные и слабые. Но не смейте путать такие понятия как «сильная кислота» или «сильное основание» с их концентрацией. Например, нельзя сделать концентрированный раствор слабой кислоты или разбавленный раствор сильного основания. Например, соляная кислота, когда растворяется в воде то отдает каждой из двух молекул воды по одному своему протону.

Когда происходит химическая реакция в ионе гидроксония ион водорода очень прочно связывается с молекулой воды. Сама реакция будет происходит до тех пор, пока полностью не исчерпаются ее реагенты. Наша вода в этом случае играет роль основания, так как получает протон от соляной кислоты. Кислоты, которые диссоциируются нацело в водных растворах, называются сильными.

Когда нам известно самая начальная концентрация сильной кислоты, то в данном случае не составляет труда подсчитать какая концентрация ионов гидроксония и хлорид-ионов в растворе. Например, если вы возьмете и в 1 литр воды растворите 0,2 моля газообразной соляной кислоты, концентрация ионов после диссоциации будет точно такой же.

Примеры сильных кислот:

1) HCl — соляная кислота;2) HBr — бромводород;3) HI — йодоводород;4) HNO3 — азотная кислота;5) HClO4 — хлорная кислота;6) h3SO4 — серная кислота.

Все известные кислоты (за исключением серной кислоты), представлены в списке выше и являются монопротоновыми, так как их атомы отдают по одному протону; молекулы серной кислоты могут с легкостью отдавать два своих протона, именно поэтому серная кислота является дипротоновой.

К сильным основаниям относятся электролиты, они полностью диссоциируются в водных растворах с образованием гидроксид-иона.

Аналогично с кислотами, вычислить концентрацию гидроксид-иона очень просто, если вы узнаете исходную концентрацию раствора. Например, раствор NaOH с концентрацией 2 моль/л диссоциирует на такую же концентрацию ионов.

Слабые кислоты. Основания и свойства

Что касается слабых кислот, то они диссоциируются не полностью, то есть частично. Различать сильные и слабые кислоты очень просто: если в справочной таблице рядом с названием кислоты показана ее константа то эта кислота является слабой; если же константа не приведена то данная кислота является сильной.

Слабые основания также хорошо реагируют с водой с образованием равновесной системы. Слабые кислоты также характеризуются константой диссоциации К.

pristor.ru

Гидролиз солей | Дистанционные уроки

11-Окт-2012 | комментария 23 | Лолита Окольнова

 

 Гидролиз — это взаимодействие солей с водой. Многие думают, что гидролиз — это когда в условии написано «прилили воду».  И это тоже 🙂 Но если нам дан раствор соли, то это значит, что эта самая соль уже вступила во взаимодействие с водой.

 

Вот стоит стакан с раствором какой-то соли. Если очень повезет, то раствор может быть даже цветным. Соль в растворе находится в виде ионов — т.е. она уже провзаимодействовала с водой — продиссоциировала на ионы.

 

Тема гидролиза довольно обширная и в данном курсе мы рассмотрим ее только в формате подготовки к ЕГЭ. Поступите в ВУЗы, будете изучать степени гидролиза, константы и т.д.

 

Любая соль состоит из двух составляющих — катиона (металла, например) и аниона — кислотного остатка. Классический пример образования соли — взаимодействие основания и кислоты.

 

основание + кислота = соль + h3O

 

 

Давайте рассмотрим эту схему на конкретных примерах

  Слабые кислоты: 

  • h3S — сероводородная кислота. Считается слабой, т.к. плохо растворима в воде — легко улетучивается из раствора, ее запах тухлых яиц ни с чем не перепутаешь! 🙂 Она очень слабо диссоциирует на ионы.
  • h3CO3 — угольная кислота. Тоже слабая, неустойчивая кислота, очень быстро распадается на CO2 и h3O
  • h3SiO3 — кремниевая кислота. Ну это вообще твердое вещество.
  • Все органические кислоты считаются слабыми

 Слабые основания: 

  • мало- и нерастворимые гидроксиды (см. таблицу растворимости)
  • Nh5OH — cлабое основание, т.к. легко разлагается на Nh4 (улетучивается из раствора) и h3O

 

pH — водородный показатель — показатель количества ионов водорода H(+) в растворе

 

 

1.1 Соль образована сильным основанием и сильной кислотой

 

NaCl — соль образована сильным основание NaOH и сильной кислотой HCl.

 

Такие соли не гидролизуются, нейтральная среда раствора, pH примерно = 7

 

1.2 Соль образована сильным основанием и слабой кислотой

 

Na2S — соль образована сильным основанием NaOH и слабой кислотой h3S.

 

Давайте посмотрим, что происходит при взаимодействии такой соли с водой:

 

Na2S + h3O =2NaOH + h3S

 

В ионном виде:

 

2Na(+) + S(-2) + h3O =2Na(+) + 2OH(-) + h3S — полное ионное уравнениев растворе остались ионы Na(+) и OH(-) — щелочная среда, pH>7

 

Это гидролиз по аниону

 

2.1 Соль образована слабым основанием и сильной кислотой

 CuCl2 — соль образована нерастворимым в воде основанием Cu(OH)2 и сильной кислотой HCl 

CuCl2 + h3O = Cu(OH)2 ↓ + 2HCl

 

В ионном виде:

 

Сu(2+) +2Cl(-) + h3O = Cu(OH)2↓ + 2H(+) + 2Cl(-) — полное ионное уравнение

 

в растворе остались ионы H(+) и Cl(-) — кислая среда, pH<7

 

Это гидролиз по катиону

 

2.2 Соль образована слабым основанием и слабой кислотой

 (Nh5)2S — соль образована слабым основанием Nh5OH и слабой кислотой h3S 

(Nh5)2S + h3O =2Nh4↑ + h3O + h3S↑

 

осталась только вода h3O — нейтральная среда, pH=7

 

Это гидролиз и по катиону, и по аниону

 

Есть очень простое для запоминания правило — что слабое, по тому идет гидролиз.

 

  • Слабое основание — гидролиз по катиону
  • Слабая кислота — гидролиз по аниону
  • Слабая кислота и слабое основание — гидролиз и по катиону, и по аниону
  • Все сильное — гидролиз не идет

 

 

 

Cильные кислоты Кислоты средней силы Cлабые кислоты

HNO3

h3SO4

HCl, HBr, HJ

HClO4

HF

h3SO3

h4PO4

h3S

h3CO3

h3SiO3

h4BO3

Ch4COOH и все остальные

органические кислоты

 

 
  • А24  ЕГЭ по химии — Гидролиз солей. Среда водных растворов: кислая, нейтральная, щелочная
  • B3 в ГИА (ОГЭ) — Опре­де­ле­ние характера среды рас­тво­ра кислот и ще­ло­чей с по­мо­щью индикаторов. Ка­че­ствен­ные реакции на ионы в рас­тво­ре (хлорид-, сульфат-, карбонат-ионы, ион аммония)

 

   

distant-lessons.ru

Как определить сильное основание

Сильное основание - неорганическое химическое соединение, образованное гидроксильной группой -ОН и щелочным (элементы I группы периодической системы: Li, K, Na, RB, Cs) или щелочноземельным металлом (элементы II группы Ba, Ca). Записываются в виде формул LiOH, KOH, NaOH, RbOH, CsOH, Са(ОН) ₂, Ва(ОН) ₂.

Вам понадобится

  • выпарительная чашка
  • горелка
  • индикаторы
  • металлический стержень
  • Н₃РО₄

Инструкция

  • Сильные основания проявляют химические свойства, характерные для всех гидроксидов. Наличие щелочей в растворе определяется по изменению окраски индикатора. К пробе с исследуемым раствором добавьте метилоранж, фенолфталеин или опустите лакмусовую бумажку. Метилоранж дает желтую окраску, фенолфталеин – пурпурную, а лакмусовая бумага окрашивается в синий цвет. Чем сильнее основание, тем интенсивнее окрашивается индикатор.
  • Если необходимо узнать какие именно щелочи вам представлены, то проведите качественный анализ растворов. Наиболее распространенные сильные основания – гидроксиды лития, калия, натрия, бария и кальция. Основания вступают в реакцию с кислотами (реакции нейтрализации) с образованием соли и воды. При этом можно выделить Са(ОН) ₂, Ва(ОН) ₂ и LiOH. При взаимодействии с ортофосфорной кислотой образуются нерастворимые осадки. Остальные гидроксиды осадков не дадут, т.к. все соли К и Na растворимы.3 Са(ОН) ₂ + 2 Н₃РО₄ --→ Ca₃(PO₄)₂↓+ 6 H₂О3 Ва(ОН) ₂ +2 Н₃РО₄ --→ Ва₃(PO₄)₂↓+ 6 H₂О3 LiOH + Н₃РО₄ --→ Li₃РО₄↓ + 3 H₂ОПроцедите их и высушите. Внесите высушенные осадки в пламя горелки. По изменению окраски пламени можно качественно определить ионы лития, кальция и бария. Соответственно вы определите где какой гидроксид. Соли лития окрашивают пламя горелки в карминово-красный цвет. Соли бария – в зеленый, а соли кальция – в малиновый.
  • Оставшиеся щелочи образуют растворимые ортофосфаты.3 NaOH + Н₃РО₄--→ Na₃РО₄ + 3 H₂О3 KOH + Н₃РО₄--→ K₃РО₄ + 3 H₂ОНеобходимо выпарить воду до сухого остатка. Выпаренные соли на металлическом стержне поочередно внесите в пламя горелки. Там, где находится соль натрия – пламя окрасится в ярко-желтый цвет, а ортофосфат калия – в розово-фиолетовый. Таким образом имея минимальный набор оборудования и реактивов вы определили все данные вам сильные основания.

completerepair.ru

Слабая кислота и сильное основание

Гидролиз

Гидролизом называется химическое взаимодействие солей с во­дой, приводящее к образованию слабого электролита. В зависимости от силы образующих соли кислот и оснований различают четыре типа солей:

Сильная кислота и сильное основа­ние. Соли, образованные сильной кислотой и сильным основа­нием гидролизу не подвергаются, так как не взаимо­действуют с водой с образованием слабых электролитов.

Слабая кислота и сильное основание. При гидролизе солей, образованных сильным основанием и слабой кислотой ( например, цианида калия) в системе происходят следующие процессы:

KCN K++CN-

h3O H++ОН+

В результате в растворе присутствуют ионы K+, OH-, Н+ и CN- и молекулы воды. Ионы Н+ и CN- взаимодей­ствуют между собой, образуя малодиссоциированные молекулы HCN

KCN + h3O KOH + HCN

CN- + h3O ОН- + HCN

В результате гидролиза увеличивается концентрация ионов ОН-, рН раствора возрастает – среда будет показывать щелочную реакцию..

Сильная кислота и слабое основание. Разберем растворение в воде соли, образованной сильной кислотой и слабым основанием, например сульфата магния. Ионы Mg2+ и ОН- вступают во взаимодействие друг с другом и в растворе будут присутствовать ионы H+ :

Mg2+ + HOH MgOH+ + H+

Уравнение в молекулярной форме

2MgSO4 + 2HOH (MgOH)2SO4 + h3SO4

В результате гидролиза рН уменьшается – реакция среды будет кислой.

Слабая кислота и слабое основание. Соли, образованные слабой кислотой и слабым основанием подвергаются наиболее полному гидролизу. Например, в результате растворения цианида аммония в воде в растворе появляются четыре вида ионов: NH+, CH-, H+ и ОН-, которые взаимодействуют с образо­ванием слабой кислоты HCN и слабого основания Nh5OH:

Nh5CN + h3O Nh5OH + HCN

В результате гидролиза солей, подобных цианиду аммония, в растворе образуются слабая кислота и слабое основание, а рН раство­ра остается близким к 7 – реакция среды будет близка к нейтральной.

При растворении солей многоосновных кислот или оснований гидролиз протекает ступенчато. Количественно процесс гидролиза характеризуется степенью гидролиза – отношением числа гидролизированных молекул соли к общему числу растворенных молекул соли. Степень гидролиза зависит от силы образующе­гося слабого электролита: она тем выше, чем слабее этот электролит. В большинстве она невелика. Влияние на гидролиз различных факторов (температуры, степени разбавления) подчиняется принципу Ле Шателье.

Поделитесь с Вашими друзьями:

psihdocs.ru



О сайте

Онлайн-журнал "Автобайки" - первое на постсоветском пространстве издание, призванное осветить проблемы радовых автолюбителей с привлечение экспертов в области автомобилестроения, автоюристов, автомехаников. Вопросы и пожелания о работе сайта принимаются по адресу: Онлайн-журнал "Автобайки"