Как объяснить ребенку деление столбиком во 2-3 классе. Как объяснить деление в 3 классе

БЕСПЛАТНО ответим на Ваши вопросы
По лишению прав, ДТП, страховом возмещении, выезде на встречную полосу и пр. Ежедневно с 9.00 до 21.00
Москва и МО +7 (499) 938-51-97
С-Петербург и ЛО +7 (812) 467-32-86
Бесплатный звонок по России 8-800-350-23-69 доб.418

Как объяснить ребенку деление столбиком во 2-3 классе

Как объяснить ребенку деление столбиком? Как дома самостоятельно отработать навык деления в столбик, если в школе ребенок что-то не усвоил? Делить столбиком учат во 2-3 классе, для родителей, конечно, это пройденный этап, но при желании можно вспомнить правильную запись и объяснить доступно своему школьнику то, что понадобится ему в жизни.

xvatit.com

Что должен знать ребенок 2-3 класса, чтобы научиться делить в столбик?

Как правильно объяснить ребенку 2-3 класса деление столбиком, чтобы в дальнейшем у него не было проблем? Для начала, проверим, нет ли пробелов в знаниях. Убедитесь, что:

  • ребенок свободно выполняет операции сложения и вычитания;
  • знает разряды чисел;
  • знает назубок таблицу умножения.

Как объяснить ребенку смысл действия «деление»?

  • Ребенку нужно объяснить все на наглядном примере.

Попросите разделить что-либо между членами семьи или друзьями. Например, конфеты, кусочки торта и т.п. Важно, чтобы ребенок понял суть — разделить нужно поровну, т.е. без остатка. Потренируйтесь на разных примерах.

Допустим, 2 группы спортсменов должны занять места в автобусе. Известно сколько спортсменов в каждой группе и сколько всего мест в автобусе. Нужно узнать, сколько билетов нужно купить одной и второй группе. Или 24 тетради нужно раздать 12 ученикам, сколько достанется каждому.

  • Когда ребенок усвоит суть принципа деления, покажите математическую запись этой операции, назовите компоненты.
  • Объясните, что деление – это операция противоположная умножению, умножение наизнанку.

Удобно показать взаимосвязь деления и умножения на примере таблицы.

Например, 3 умножить на 4 равно 12. 3 — это первый множитель;4 — второй множитель;12 — произведение (результат умножения).

Если 12 (произведение) разделить на 3 (первый множитель), получим 4 (второй множитель).

Компоненты при делении называются иначе:

12 — делимое;3 — делитель;4 — частное (результат деления).

Как объяснить ребенку деление двузначного числа на однозначное не в столбик?

Нам, взрослым, проще «по старинке» записать «уголком» — и дело с концом. НО! Дети еще не проходили деление в столбик, что делать? Как научить ребенка делить двузначное число на однозначное не используя запись столбиком?

Возьмем для примера 72:3. 

Все просто! Раскладываем 72 на такие числа, которые легко устно разделить на 3: 72=30+30+12.

Все сразу стало наглядно: 30 мы можем разделить на 3, и 12 ребенок легко разделит на 3. Останется только сложить результаты, т.е. 72:3=10 (получили, когда 30 разделили на 3) + 10 (30 разделили на 3) + 4 (12 разделили на 3). 

72:3=24Мы не использовали деление в столбик, но ребенку был понятен ход рассуждений, и он выполнил вычисления без труда.

После простых примеров можно переходить к изучению деления в столбик, учить ребенка правильно записывать примеры «уголком». Для начала используйте только примеры на деление без остатка.

Как объяснить ребенку деление в столбик: алгоритм решения

Большие числа сложно делить в уме, проще использовать запись деления столбиком. Чтобы научить ребенка правильно выполнять вычисления, действуйте по алгоритму:

  • Определить, где в примере делимое и делитель. Попросите ребенка назвать числа (что на что мы будем делить).

213:3213 — делимое3 — делитель

  • Записать делимое — «уголок» — делитель.

  • Определить, какую часть делимого мы можем использоваться, чтобы разделить на заданное число.

Рассуждаем так: 2 не делится на 3, значит — берем 21.

  • Определить, сколько раз делитель «помещается» в выбранной части.

21 разделить на 3 — берем по 7. 

  • Умножить делитель на выбранное число, результат записать под «уголком». 

7 умножить на 3 — получаем 21. Записываем.

  • Найти разницу (остаток).

На этом этапе рассуждений научите ребенка проверять себя. Важно, чтобы он понял, что результат вычитания ВСЕГДА должен быть меньше делителя. Если вышло не так, нужно увеличить выбранное число и выполнить действие еще раз.

  • Повторить действия, пока в остатке не окажется 0.

Дальше можно взять пример посложнее, чтобы убедиться, что ребенок усвоил правильную запись и алгоритм рассуждений.

Как правильно рассуждать, чтобы научить ребенка 2-3 класса делить столбиком

Как объяснить ребенку деление 204:12=?1. Записываем столбиком.204 — делимое, 12 — делитель.

2. 2 не делится на 12, значит, берем 20.3. Чтобы разделить 20 на 12 берем по 1. Записываем 1 под «уголком».4. 1 умножить на 12 получим 12. Записываем под 20.5. 20 минус 12 получим 8. Проверяем себя. 8 меньше 12 (делителя)? Ок, все верно, идем дальше.

6. Рядом с 8 пишем 4. 84 разделить на 12. На сколько нужно умножить 12, чтобы получить 84?Сразу сложно сказать, попробуем действовать методом подбора.Возьмем, например, по 8, но пока не записываем. Считаем устно: 8 умножить на 12 получится 96. А у нас 84! Не подходит. Пробуем поменьше… Например, возьмем по 6. Проверяем себя устно: 6 умножить на 12 равно 72. 84-72=12. Мы получили такое же число, как наш делитель, а должно быть или ноль, или меньше 12. Значит, оптимальная цифра 7! 

7. Записываем 7 под «уголок» и выполняем вычисления. 7 умножить на 12 получим 84.8. Записываем результат в столбик: 84 минус 84 равно ноль. Ура! Мы решили правильно!

Итак, вы научили ребенка делить столбиком, осталось теперь отработать этот навык, довести его до автоматизма.

Почему детям сложно научиться делить в столбик? 

Помните, что проблемы с математикой возникают от неумения быстро делать простые арифметические действия. В начальной школе нужно отработать и довести до автоматизма сложение и вычитание, выучить «от корки до корки» таблицу умножения. Все! Остальное — дело техники, а она нарабатывается с практикой.

Будьте терпеливы, не ленитесь лишний раз объяснить ребенку то, что он не усвоил на уроке, нудно, но дотошно разобраться в алгоритме рассуждений и проговорить каждую промежуточную операцию прежде, чем озвучить готовый ответ. Дайте дополнительные примеры на отработку навыков, поиграйте в математические игры — это даст свои плоды и вы увидите результаты и порадуетесь успехам чада очень скоро. Обязательно покажите, где и как можно применить полученные знания в повседневной жизни.

Уважаемые читатели! Расскажите, как вы учите ваших детей делить в столбик, с какими сложностями приходилось сталкиваться и какими способами вы их преодолели.

rastishka.by

Как легко объяснить ребенку деление | WomenLand

Важно, чтобы ребенок понимал суть такого математического действия, как деление. Для этого необходимо ему объяснить, что деление представляет собой разделение чего-либо на равные доли. Рекомендуется превратить процесс обучения в интересную игру, чтобы ребенок был сконцентрирован.

Деление в игровой форме

СОВЕТ: Таблицу деления так же важно выучить, как и таблицу умножения. Лучше это делать на каникулах!

Помогите ребенку понять, что деление — это обратное действие умножению.

Самым простым способом объяснить деление является проведение наглядной демонстрации разделения предметов на равные доли. В качестве делимых предметов можно использовать все, что угодно, но желательно что-то интересное для ребенка. В качестве примера можно воспользоваться конфетами и игрушками.

Как объяснить ребенку деление при помощи игрушек?

Изначально нужно взять 2 конфеты и попросить ребенка разделить их между 2 плюшевыми игрушками. Благодаря такому простому примеру ребенок поймет суть математического деления. После этого можно переходить к более сложным примерам деления.

Как происходит деление, подробно и в игровой форме показывается в следующем видео:

Также вы можете взять коробку цветных карандашей, которая будет выступать одним целым, и предложить малышу разделить их между собой и вами поровну. После, попросите ребенка посчитать, сколько карандашей было вначале в коробке и сколько он смог раздать.

По мере понимания ребенка, родитель может увеличивать число предметов и количество участников задачи. Затем нужно рассказать, что не всегда получается разделить что-либо поровну и некоторые предметы иногда остаются «ничейными». К примеру, можно предложить разделить 9 яблок между бабушкой, дедушкой, папой и мамой. Ребенок должен понять, что все получат лишь по 2 яблока, а одно окажется в остатке.

Деление в игровой форме

Таким образом, вы объясните азы деления и подготовите ребенка к более сложным школьным задачам.

СОВЕТ: Старайтесь заниматься со своим ребенком в игровой форме. Тогда ему будет интересно заниматься, а значит, занятия пройдут весело и без особых усилий.

Также вам будет интересно и полезно распечатать таблицу деления в виде картинки.

Деление с помощью таблицы умножения

Делить однозначные числа на однозначные проще всего с использованием таблицы умножения. Для этого достаточно объяснить ребенку, что деление является действием обратным к умножению. Сделать это можно на любом правильном примере деления натуральных чисел.

Например: 2 умножить на 3 будет 6. Основываясь на данном примере продемонстрировать ребенку процесс деления. Следует действовать следующим образом: разделить 6 на любой множитель, например, на число 2. В ответе получится 3, то есть множитель неиспользованный при делении.

Таким способом можно делить многозначные (двухзначные) числа на однозначные.

Алгоритм деления в столбик

Прежде, чем начать объяснение деления в столбик, нужно рассказать ребенку о значении делимого, делителя и частного. В примере 20:4=5, 20 является делимым, 4 делителем, а 5 частным. У каждой отдельной цифры в примере одно наименование.

Многозначные числа (трехзначные и двухзначные) проще всего делить в столбик. Для этого нужно записать многозначные числа уголком.

Например, нужно разделить трехзначное число 369 на однозначное число 3.

В качестве делителя записано трехзначное число 369, а в качестве делителя однозначное число 3. Первым делом важно объяснить ребенку, что деление в столбик происходит в несколько этапов:

  • Определение части делимого подходящего для первичного деления. В данном случае цифра 3. 3:3=1. Цифру 1 нужно записать в графу частное.
  • «Спустить» следующее делимое число. В данном случае это цифра 6. 6:3=2. Полученное число 2 нужно записать в частное.
  • Далее необходимо «спустить» следующее делимое число 9. 9 делится без остатка на 3, полученный результат необходимо записать в частное. Результатом деления трехзначного числа 369 на 3 получается 123.

Деление десятичного числа на двухзначное проходит примерно так же. В случае с десятичным числом необходимо объяснить ребенку, что запятую в делителе переносят на столько знаков, на сколько перенесли в делимом. Далее следует обычное деление в столбик.

Деление с остатком

Необходимо предупредить ребенка о встречающихся случаях деления с остатком. В качестве примера можно поделить двухзначное число 26 на 5 столбиком. В результате остается остаток 1.

Важно после объяснения позволить ребенку самостоятельно решить несколько примеров, чтобы весь изученный материал надолго остался в памяти ребенка.

А еще Вы можете посмотреть видео, где все объясняют понятным языком.

И напоследок, не приучайте себя и ребенка пользоваться онлайн калькулятором, чтоб узнать, как  разделить 145 на 9, 34 на 40, 100 на 4, 30 на 80, 416 на 52 и другие примеры. Это не принесет пользы не вам, ни ему.

В 1-ый класс идет не только ребенок – родители вместе с ним начинают и вместе с ним заканчивают образовательное учреждение. Учитель в школе не всегда успевает объяснить каждому отдельному ученику ту или иную дисциплину. Поэтому у домашнего образования — свои плюсы. Вы можете сами объяснить ребенку, индивидуально и не спеша то, что он не понял. В этот непростой период, главное — это набраться терпения и не ругать школьника из-за неправильных решений. Тогда все у вас получится.

women-land.ru

примеры на умножение и деление, сложение и вычитание

Ваш ребенок еще только учится в начальной школе, а вы уже задумываетесь о его дальнейшей учебе, развитии и будущем? Это очень похвально. А думали ли вы над тем, что успеваемость ребенка можно улучшить, если заниматься с ним ежедневно по математике всего лишь 15 минут в день дополнительно? И это не выдумки. В материалах этой статьи мы приведем примеры и задачи для школьников начальной школы по математике, а именно, для третьеклассников. (Для удобства решения приведенные ниже задания вы можете распечатать).

Как учить ребенка учиться

Умеет ли ваш ребенок учиться? Уверена, что многих родителей этот вопрос поставил в тупик. А действительно, что значит «уметь учиться»? Когда ваш юный школьник только пошел в школу, после занятий, возможно, он бежал домой и очень хотел сразу же делать уроки. Так бывает, когда дети очень ждут поступления в 1 класс. Но со временем интересы к своевременному выполнению домашнего задания ослабевают и «домашка» становится скучным времяпровождением.

А ведь именно нежелание выполнять домашние задания, готовиться к школьным рефератам, семинарам и викторинам, становится основной причиной того, что ребенок вначале не хочет, а после и не умеет учиться. Пробелы в знаниях могут накапливаться словно снежный ком, снижая успеваемость школьника и убивая в нем желание учиться.

Чтобы школьник учился этой сложной и ответственной науке – учиться – родители должны всячески помогать ему: составить распорядок дня, учить ребенка выполнять домашнее задание наперед, прорешивать или прописывать дополнительные упражнения, чтобы тренировать и руку для письма, и мозг для устного счета. Математике дается детям начального звена сложнее всего, именно поэтому мы и подготовили для школьников 3 класса этот материал.

Примеры по математике на умножение и деление

Еще во втором классе дети выучили таблицу умножения. Если вы сейчас находитесь в полном заблуждении, как выучить с ребенком таблицу умножения, то рекомендуем к ознакомлению следующий материал по ссылке. На протяжении второго класса школьники постепенно осваивали простые примеры и задачи, используя таблицу умножения, а в третьем классе они оттачивают навыки умножения и сложения.

Задание 1

Заменить сложение вычитанием в тех примерах, в которых от замены знака ответ не изменится:

5 + 5 + 5 =1 + 1 + 1 + 1 =0 + 0 + 0 + 0 + 0 =8 + 8 + 8 + 8 =7 + 7 — 7 + 7 =7 + 7 + 7 — 7 =14 + 14 =61 + 61 =

Подсказка:

5 + 5 + 5 = 15, если заменить знак «+» на знак «•», то получится5 • 5 • 5 = 125. 15 не равно 125. Значит, в первом равенстве заменить знак «+» на знак «•» нельзя.

По аналогии решаем стальные равенства и делаем выводы о возможной или невозможной замене знака «+» на знак «•».

Задание 2

Какие выражения нельзя заменить суммой, чтобы ответ не изменился:

0 • 4 =1 • 0 =1 • 1 =1 • 6 =0 • 9 =7 • 0 =5 • 2 =2 • 2 =

Подсказка:

Вспомните, каким правилом следует пользоваться при умножении на ноль.

Задание 3

Решите примеры:

45 : 5 + 1 =45 : 5 • 1 =543 — 5 • 1 =(543 — 5) • 1 =423 + 7 • 0 =(423 + 7) • 1 =10 — 0 + 4 =10 • 0 + 4 =

Задание 4

Из каждого выражения на умножение составьте выражения на деление:

6 • 8 =7 • 1 =4 • 0 =0 • 3 =4 • 9 =

Подсказка

6 • 8 = 4848 : 8 = 648 : 8 = 6

Задание 5

Какое значение имеют следующие выражение:

а : а =а : 1 =0 : а =а : 0 =

Задание 6

Решите примеры:

(596 + 374) • 1 =596 + 374 • 1 =(596 + 374) • 0 =596 + 374 + 0 =0 • 320 : 1 =0 + 320 : 1 =

Обязательно повторите с ребенком правила умножения и деления числа на единицу и умножения или деления числа на ноль, а также особенности деления ноля на любое число. Часто именно в этих примерах дети делают ошибки, которые влекут за собой дальнейшее неправильное решение примеров, выражений и задач.

Задание 7 (задача)

В оздоровительный лагерь привезли фрукты: 7 ящиков винограда и 5 ящиков персиков. Масса привезенных персиков составляет 40 килограммов. Какая масса винограда, если ящик винограда на 1 килограмм весит больше, чем ящик персиков.

Решение

Найдем, сколько весит один ящик персиков. Известно, что общая масса персиков составляет 40 кг, а всего ящиков – 5.

Первое действие:40 : 5 = 8 (кг) весит один ящик персиков.

Теперь найдем, сколько весит один ящик винограда, если известно, что он тяжелее на 1 кг, чем ящик персиков.

Второе действие:8 + 1 = 9 (кг) весит один ящик винограда.

Теперь находим общую массу всего винограда, если известно, что один ящик весит 9 кг, а всего винограда – 7 ящиков.

Третье действие:9 • 7 = 63 (кг) – общая масса винограда.

Ответ: масса привезенного винограда составляет 63 кг.

Задание 8

Сосна может расти 600 лет, береза – 350 лет. А ива – в 6 раз меньше от сосны. Что может расти дольше береза или ива? И насколько лет?

Решение

Вначале рассчитаем, сколько лет может расти ива, если известно, что она растет в 6 раз меньше, чем сосна.

Первое действие:600 : 6 = 100 (лет) может расти ива.

Теперь, когда известно, что ива может расти 100 лет, сравним продолжительность «жизни» березы и ивы. Известно, что береза растет 350 лет, а ива – 100. 350 больше чем 100, значит береза может расти дольше ивы. Чтобы рассчитать, на сколько береза может расти дольше ивы, решаем равенство.

Второе действие:350 — 100 = 250 (лет) – на столько береза может расти дольше ивы

Ответ: береза может расти дольше ивы на 250 лет.

Важно! Если задачу можно решить несколькими способами, обязательно сообщите об этом ребенку. Пусть потренирует логику и начертит все возможные схем решения задачи, т.е. составить схематическое условие. Ведь правильно составленное условие задачи – это 90% успешного решения.

Задание 9

В понедельник гусеница начала ползти вверх по дереву высотой 9 метров. За день она поднялась вверх на 5 метров, а за ночь – опустилась на 2 метра. На какой день гусеница достигнет верхушки дерева?

Решение

Для начала рассчитаем, на сколько метров поднимается гусеница вверх за один день, с учетом того, что ночью на опускается.

Первое действие:5 — 2 = 3 (м) гусеница проползает за сутки вверх.

Теперь найдем количеств дней, необходимых на преодоление расстояния 9 метров вверх по дереву.

Второе действие:9 : 3 = 3 (дня) нужно гусенице, чтобы достичь вершины дерева.

Ответ: 3 дня нужно гусенице, чтобы достичь вершины дерева.

Задание 10

В коробке было 18 килограммов печенья. Сначала из нее взяли 13 килограммов печенья, потом досыпали в 4 раза больше, чем оставалось. Сколько килограммов печенья стало в коробке.

Решение

Сначала найдем, сколько килограммов печенья осталось в коробке, после того, как из нее забрали 13 килограммов.

Первое действие:18 — 13 = 5 (кг) печенья осталось в коробке

Теперь рассчитаем сколько килограммов печенья досыпали в коробку.

Второе действие:5 • 4 = 20 (кг) досыпали

Сложим тот вес, который оставался в коробке, и тот, который досыпали, чтобы найти, сколько килограммов печения стало в коробке.

Третье действие:5 + 20 = 25 (кг) стало

Ответ: 25 килограммов печения стало в коробке.

Задание 11

За лето хозяйка вырастила 208 домашних птиц. Кур и уток было 129, а уток и гусей – 115. Сколько кур, уток и гусей вырастила хозяйка за лето?

Решение

Известно, что кур и уток было 129, а всего птиц – 208. Значит, можно найти количество гусей.

Первое действие:208 (птиц) – 129 (уток + кур) = 79 гусей

Также известно, что уток и гусей всего 115, значит мы можем найти, сколько было кур.

Второе действие:208 (птиц) – 115 (уток + гусей) = 93 кур

Теперь, когда мы знаем количество гусей и кур, а также общее количество домашних птиц, мы можем найти количество уток.

Третье действие:208 — (79 + 93) = 36 уток

Ответ: за лето хозяйка вырастила 79 гусей, 93 кур и 36 уток.

Второй вариант решения

Известно, что кур и уток было 129, а всего птиц – 208. Значит, можно найти количество гусей.

Первое действие:208 (птиц) – 129 (уток + кур) = 79 гусей

Также известно, что уток и гусей всего 115, значит мы можем найти, сколько было уток

Второе действие:115 (уток + гусей) – 79 (гусей) = 36 уток

Теперь, когда мы знаем количество гусей и уток по отдельности, а также общее количество домашних птиц, мы можем найти количество кур.

Третье действие:208 – (79 + 36) = 208 – 115 = 93 кур

Ответ: за лето хозяйка вырастила 79 гусей, 93 кур и 36 уток.

Примеры и задачи по математике на сложение и вычитание

Основной задачей заданий и примеров по математике на сложение и вычитание в третьем классе является популяризация математических знаний и идей, поддержка и развитие математических знаний школьников, стимулирование и мотивация учеников в изучении естественно-математический предметов.

Задание 1

Реши уравнения:

Х – 40 = 60Х + 4 = 61Х – 16 = 25Х + 25 = 84Х – 45 = 251Х + 56 = 106Х + 78 = 301

Задание 2

Расставьте скобки так, чтобы ответом выражения в первом случае было 6, а в втором – 2:

12 : 2 + 2 • 2 =

Подсказка

12 : (2 + 2) • 2 = 612 : (2 + 2 • 2) = 2

Важно! Некоторые условия составлены таким образом, чтобы ребенок включал логическое мышление. Прорешивая такие задания он мыслит, делает предположения, размышляет, и находит правильное решение задания.

Задание 3

Перевести в одну систему измерения и решить выражения:

1 м – 5 дм =1 м – 5 см =6 м 5 дм – 8 дм =5 см + 5 см =15 см + 5 дм =3 дм – 6 см =3 дм 5 см – 15 см =1 дм 2 см – 3 см =1 м 6 дм – 8 дм =

Задание 4

Из каждого выражения произведения отнять 15 и записать новые выражение и решить их:

7 • 3 =7 • 6 =7 • 9 =8 • 6 =8 • 4 =3 • 9 =4 • 4 =5 • 7 =

Подсказка

Если 7 • 3 = 21, то 21 – 15 = 6

Задание 5

Решить примеры:

7 • 6 + 7 • 4 =21 : 3 – 6 =(35 – 28) • 5 =(68 – 26) : 7 =7 + (6 : 2) =3 – 14 : 2 =60 – 63 : 7 =81 – 56 : 7 =50 + 42 : 7 =

Задание 6 (задача)

В шести одинаковых бочонках 24 литра воды. Сколько литров воды в сети таких же бочонках, на сколько литров больше во втором случае, чем в первом?

Решение

Вначале найдем, сколько воды вмещается в один бочонок.

Первое действие:24 : 6 = 4 (л) в одном бочонке

Теперь рассчитаем, сколько воды в семи одинаковых бочонках

Второе действие:4 • 7 = 28 (л) в сети одинаковых бочонках

Найдем ответ на главный вопрос задачи, на сколько литров больше во втором случае, чем в первом.

Третье действие:28 – 24 = 4 (л) на столько литров больше во втором случае, чем в первом

Ответ: на 4 литра воды больше во втором случае, чем в первом

Задание 7

Отец и сын купили на рынке картошку в 6 одинаковых сетках. Отец принес домой 4 сетки, а сын 2. Всего получилось 18 килограммов картошки. Сколько килограммов принес отец? Сколько килограммов принес сын? На сколько больше килограммов картошки принес отец?

Решение

Рассчитаем, сколько картошки было в одной сетке, если известно, то всего принести 18 килограммов в 6 одинаковых сетках.

Первое действие:18 : 6 = 3 (кг) в одной сетке.

Теперь узнаем сколько килограммов принес отец и сколько килограммов принес сын.

Второе действие:3 • 4 = 12 (кг) принес отец

Третье действие:3 • 2 = 6 (кг) принес сын

Найдем искомую разницу.

Четвертое действие:12 – 6 = 6 (кг) на столько больше принес отец.

Ответ: Отец принес на 6 килограммов больше картошки, чем сын.

Задание 8

За 5 часов работы двигателя было израсходовано 30 литров бензина. Сколько бензина будет израсходовано за 8 часов работы двигателя. На сколько больше двигатель израсходует бензина за разницу во времени?

Решение

Рассчитаем, сколько бензина расходует двигатель за час своей работы.

Первое действие:30 : 5 = 6 (л) за один час работы

Рассчитаем, сколько составляет разница во времени?

Второе действие:8 – 5 = 3 (ч) разница во времени

Теперь можно рассчитать, сколько бензина израсходовано за оставшиеся 3 часа.

Третье действие:3 • 6 = 18 (л) потрачено за 3 часа.

Ответ: за 3 часа двигатель истратил 18 литров бензина

Второй способ решения

Рассчитаем, сколько бензина расходует двигатель за час своей работы.

Первое действие:30 : 5 = 6 (л) за один час работы

Рассчитаем, сколько бензина будет израсходовано за 8 часов работы двигателя.

Второе действие:8 • 6 = 48 (л) израсходовано за 8 часов работы двигателя

Теперь можно рассчитать разницу потраченного топлива.

Третье действие:48 – 30 = 18 (л) разница потраченного топлива

Ответ: за 3 часа двигатель истратил 18 литров бензина

Важно! Задания на сложение и вычитание не исключают в своем условии или решении возможность других математических действий, например, умножения или деления. Ученик третьего класса уже должен уметь различать в условии требования к сложению и умножению, делению и вычитанию. Именно потому задания по математике для этого класса часто носят смешанный характер.

Задание 9

В двух прудах плавало 56 уток. Когда из первого пруда во второй перелетело 7 уток, то в нем осталось 25. Сколько уток с самого начала плавало во втором пруду?

Решение

Известно, что после того, как из первого пруда улетело 7 уток, в нем осталось 25. Находим количество уток в первом пруду с самого начала.

Первое действие:7 + 25 = 32 (утки) было в первом пруду.

Теперь можем найти, сколько уток плавало во втором пруду с самого начала.

Второе действие:56 – 32 = 24 (утки) было во втором пруду.

Ответ: с самого начала во втором пруду было 24 утки.

Задание 10

С первого куста собрали 9 килограммов ягод. Со второго куста собрали на 3 килограммов больше, чем с первого, а с третьего – на 2 килограммов больше, чем со второго. Сколько килограммов ягод собрали с третьего куста? Сколько всего ягод собрали?

Решение

Вначале найдем, сколько килограммов ягод собрали со второго куста.

Первое действие:9 + 3 = 12 (кг) ягод со второго куста

Теперь определяем, сколько килограммов ягод собрали с третьего куста

Второе действие:12 + 2 = 14 (кг) год с третьего куста

Когда все составляющие известны, находим ответ на главный вопрос задачи.

Третье действие:9 + 12 + 14 = 35 (кг) ягод всего

Ответ: всего собрали 35 килограммов ягод.

Вместо заключения

Уделяйте математике достаточно внимания уже с начальной школы. Этот предмет не только тренируем мозг в устном счете, но и умении логически мыслить, развивать смекалку. Постепенно привыкая к выполнению дополнительных и основных заданий, ребенок учится учиться, выполнять требования учителя, грамотно планировать свое время, распределять время для учебы и досуга.

Математические задания для третьеклассников моно составлять самостоятельно по приведенным нами аналогии, это не составит особого труда. Зато ваш ученик сможет больше тренироваться в математике, выполнять задания на каникулах и выходных, а также заниматься дополнительно после школы.

childage.ru

Как научить ребенка делить в столбик

Принцип деления

Прежде чем приступать к объяснению алгоритма деления следует сформировать у ребенка понимание самого процесса.

Объясните маленькому ученику, что «деление» – это разделение единого целого на равные части.

Возьмите коробку карандашей, которая будет выступать единым целым (можно взять любые предметы – кубики, спички, яблоки и т. д.), и предложите ребенку разделить их поровну между собой и вами. Затем, попросите его сосчитать сколько карандашей было изначально в коробке и сколько он раздал каждому.

По мере понимания ребенка, увеличивайте число предметов и количество участников. Далее, следует отметить, что не всегда получается разделить поровну и некоторые предметы остаются «ничейными». Например, предложите разделить 9 груш между бабушкой, дедушкой, папой и мамой. Ребенок должен усвоить, что все получат по 2 груши, а одна окажется в остатке.

Почитать в тему:

evrikak.ru

деление с остатком, примеры и пояснения :: SYL.ru

Чем занимается на математике 3 класс? Деление с остатком, примеры и задачи - вот что изучается на уроках. О делении с остатком и алгоритме таких вычислений пойдет речь в статье.

Особенности

Рассмотрим темы, включенные в программу, которую изучает 3 класс. Деление с остатком выделено в специальный раздел математики. О чем идет речь? Если делимое не делится на делитель нацело, то остается остаток. Например, делим 21 на 6. Получается 3, но в остатке остается 3.

В случаях, когда во время деления натуральных чисел остаток равен нулю, говорят о том, что произведено деление нацело. Например, если 25 нужно поделить на 5, получается число 5. Остаток равен нулю.

Решение примеров

Для того чтобы произвести деление с остатком, используется определенная запись.

Приведем примеры по математике (3 класс). Деление с остатком в столбик можно не записывать. Достаточно записи в строчку: 13:4=3 (остаток 1) или 17:5=3 (остаток 2).

Разберем все подробнее. Например, при делении 17 на три получается целое число пять, кроме того, получается остаток два. Каков порядок решения такого примера на деление с остатком? Сначала необходимо отыскать максимальное число до 17, разделить которое можно без остатка на три. Самым большим будет 15.

Далее проводится деление 15 на число три, результатом действия будет цифра пять. Теперь вычитаем из делимого число, найденное нами, то есть из 17 отнимаем 15, получаем два. Обязательным действием является сверка делителя и остатка. После проверки обязательно записывается ответ совершенного действия. 17:3=15 (остаток 2).

Если остаток будет больше делителя, действие выполнено неправильно. Именно по такому алгоритму выполняет 3 класс деление с остатком. Примеры сначала разбирает учитель на доске, затем ребятам предлагается проверка знаний путем проведения самостоятельной работы.

Пример с умножением

Одна из самых трудных тем, с которой сталкивается 3 класс, - деление с остатком. Примеры могут быть сложными, особенно когда требуются дополнительные расчеты, записываемые в столбик.

Допустим, необходимо разделить число 190 на 27 с получением минимального остатка. Попробуем решить задачу, пользуясь умножением.

Подберем число, которое при умножении будет давать цифру, максимально приближенную к числу 190. Если умножить 27 на 6, получим цифру 162. Вычтем из 190 число 162, остаток будет 28. Он получился больше, чем исходный делитель. Следовательно, число шесть не подходит для нашего примера в качестве множителя. Продолжим решение примера, взяв для умножения число 7.

Умножая 27 на 7, мы получим произведение 189. Далее проведем проверку правильности решения, для этого вычтем из 190 полученный результат, то есть отнимем число 189. Остатком будет 1, что явно меньше 27. Именно так решаются сложные выражения в школе (3 класс, деление с остатком). Примеры всегда предусматривают запись ответа. Все математическое выражение можно оформить так: 190:27=7 (остаток 1). Подобные вычисления можно производить и в столбик.

Именно так осуществляет 3 класс деление с остатком. Примеры, приведенные выше, помогут разобраться в алгоритме решения подобных задач.

Заключение

Для того чтобы у учеников начальных классов были сформированы правильные вычислительные навыки, педагог во время проведения занятий по математике обязан уделять внимание пояснению алгоритма действий ребенка при решении заданий на деление с остатком.

По новым федеральным государственным образовательным стандартам особое внимание уделяется индивидуальному подходу к обучению. Учитель должен подбирать задания для каждого ребенка с учетом его индивидуальных способностей. На каждой ступени обучения правилам деления с остатком педагог должен осуществлять промежуточный контроль. Он позволяет ему выявлять основные проблемы, возникающие с усвоением материала у каждого ученика, своевременно проводить коррекцию знаний и навыков, устранять появляющиеся проблемы, получать желаемый результат.

www.syl.ru

Деление «в столбик» — теперь по-русски :) – Вадим Стеркин

Математика в 3 классе невозможна без поисковых технологий :) Просматривая статистику посещений своего блога осенью 2008 г, я обратил внимание, что с начала сентября в него ежедневно приходят из Google несколько человек по запросу деление в столбик. Действительно, я когда-то писал о том, как делят в столбик американцы. Как ни странно, именно эта запись стояла первой в списке результатов поисковика, но она ничем не помогала бедным школьникам и их родителям.

Беглый просмотр других результатов поисковика не выявил алгоритма деления в первой десятке, и даже в русской Википедии статья еще ждала своего автора. Я решил восполнить пробел, не претендуя на полноту изложения материала или профессиональный педагогический подход.

Итак, дорогие школьники, сегодня мы будем делить 861 на 7 в столбик. Если вы еще не знаете, в любой операции деления должно быть делимое, делитель и частное. В нашем случае 861 – делимое, 7 – делитель, а результат деления – частное. Его и будем искать.

Для начала записываем рядом делимое и делитель, затем разделяем их «уголком».

Теперь нужно внимательно посмотреть на цифры делимого и, двигаясь слева направо, найти в нем наименьшее число, которое больше делителя. Чисел тут три: 8, 86 и 861. Из них наименьшим является 8. Теперь нужно ответить на главный вопрос! Сколько раз наш делитель (7) содержится в числе 8? Один раз. Поэтому смело пишем 1 под чертой – это первая цифра частного, которое мы пытаемся найти.

А где же столбик? Сейчас будет :) Теперь умножаем 7 на 1 и получаем 7. Записывем полученный результат под первым числом делимого и вычитаем в столбик, то есть из 8 вычитаем 7. Получаем 1.

Если вы все сделали правильно, результат вычитания должен быть меньше делителя. Если больше, значит вы неправильно определили, сколько раз 7 содержится в 8. Поскольку результат вычитания меньше делителя, нам нужно его увеличить для продолжения нашего нелегкого труда. И делать это мы будем за счет следующей цифры делимого. Поскольку 8 мы уже использовали, берем 6 и приписываем к единице.

Теперь отвечаем на уже знакомый вопрос. Сколько раз 7 содержится в 16? Два раза. Приписываем двойку к единице под чертой — это вторая цифра частного. Умножаем 7 на 2, получаем 14 и записываем результат под 16.

Дальше идем по уже знакомому пути. Вычитаем 14 из 16, получаем 2 (2 меньше 7, значит все сделано правильно). Используем третью и последнюю цифру делимого – 1, сносим ее вниз и приписываем к двойке, получая 21.

Снова отвечаем на знакомый вопрос. Сколько раз 7 содержится в 21? Три раза. Пишем тройку под чертой. Умножаем 7 на 3, получаем 21 и записываем в столбик под 21. Вычитаем 21 из 21, получаем 0. Ура, деление выполнено без остатка! Ответ – 123.

Если вы использовали все цифры делимого, а ноль так и не получился, значит либо деление без остатка невозможно, либо вы ошиблись в арифметике. Выполните проверку… при помощи калькулятора – Пуск – Выполнить – calc.

Конец урока :)

www.outsidethebox.ms

Как научиться делить столбиком?

Одним из наиболее важных этапов обучения вашего ребенка математическим операциям является обучение действиям деления простых чисел. Для обучения делению ребенка, нужно, чтобы к моменту обучения он уже освоил и хорошо понимал такие математические действия, как вычитание, сложение.

Кроме того, важно иметь четкое представление о самой сущности таких действий, как деление и умножение. Таким образом, он должен понимать, что в действии с делением заключается метод разделения чего-либо на равные доли. В заключение необходимо также обучиться операциям по умножению и хорошо знать таблицу умножения.

Обучаемся операции по делению на части

На данном этапе лучше сформировать понимание того, что главное в процессе деления, это разделение чего-то на равные части. Самым простым способом научиться этому для ребенка, это будет предложить ему поделить несколько предметов между ним и членами семьи или друзьями.

К примеру, возьмите 6 одинаковых предметов и предложите ребенку поделить их на две равные части. Можно немного усложнить задание, предложив поделить не на две, а на три равные части.

Важным моментом здесь считается проводить операции по делению четных количеств предметов. Такое действие окажется полезным на дальнейшем этапе, когда ребенку будет необходимо понимание того, что разделение, это действие, обратное умножению.

Делим и умножаем, при помощи таблицы умножения

Здесь стоит объяснить ребенку, про обратное умножению действие, называется «делением». Опираясь на таблицу умножения, покажите обучаемому эту взаимосвязь между делением и умножением на какой-нибудь примере.

Например: 2 умножить на 4 будет восемь. Здесь акцентируйте внимание на то, что итогом умножения будет произведение двух чисел. Затем будет лучше проиллюстрировать операцию деления, указывая на действие обратной операции умножения.

Поделите получившийся ответ «8» на любой множитель – «4» или «2», в результате всегда будет тот множитель, который не использовался в операции.

Также стоит научить распознавать категории, описывающие операции деления, такие как, «делитель», «делимое», «частное». Важно закрепить данные знания, они наиболее необходимы для дальнейшего процесса обучения!

Разделяем столбиком – легко и быстро

Перед тем, как начинать обучение следует вспомнить с ребенком, какое название имеет каждое число в процессе операции разделения. Главное, научиться быстро и безошибочно научиться определять данные категории. 

Наглядный пример:

Попробуем разделить 938 на 7. В этом приведенном примере число 938 будет являться делимым, а число 7 будет делителем. В результате действия, ответ будет называться частное.

  1. Необходимо записать числа, разделив их «уголком».
  2. Предложите ученику из наименьшего числа делимого выбрать то, что больше делителя. Из цифр 9, 3, 8, наибольшим будет цифра 9. Предложите проанализировать, сколько семерок может содержать в цифре 9. Одним правильным ответом здесь будет только один. Первым результатом записываем 1.
  3. Оформляем деление в столбик.

Умножим делитель 7 на 1, ответ будет 7. Полученный результат вписываем под первое число нашего делимого, затем вычитаем в столбик. Таким образом, из 9 отнимаем 7 и в ответе получаем 2. Это тоже записываем.

  1. Видим число, получившееся меньше делителя, поэтому увеличиваем его. Чтобы это сделать, объединим его вместе с неиспользованным числом делимого, то есть с цифрой 3. Дописываем 3 к полученной 2.
  2. Затем анализируем сколько раз делитель 7 будет содержаться в числе 23. Ответ 3 раза и фиксируем его в частном. Результат произведения 7 на 3 (21) вписываем снизу в столбик под число 23.
  3. Остается только найти последнее число частного. Применяя тот же алгоритм, продолжает вычисления в столбике. Вычитает в столбике 23-21 получает разницу, равной числу 2. Из всего делимого, у нас остается только неиспользованное число 8. Его объединяем с полученным результатом 2, получаем в ответе 28.
  4. В заключение анализируем, какое количество, раз делитель 7 содержится в полученном нами числе. Правильный ответ 4 раза. Ее мы вписываем в результат. В итоге наш ответ, полученный при процессе деления равен 134.

Самым наиболее главным при обучении ребенка методу деления, будет усвоение и четкое понимание алгоритма действий, ведь на самом деле он предельно прост.

Если ваш ребенок отлично умеет оперировать таблицей умножения, то с «обратным» делением у него не должны возникнуть трудности. Поэтому очень важно все время тренировать полученные навыки. Не стоит останавливаться на достигнутом.

Для легкого обучения юного ученика методу деления следует:

  • в возрасте трех лет правильно усвоить термины «целое» и «часть». Должно сформироваться понимание понятия целого, в качестве неразделимой категории, а также восприятие отдельных частей целого в понятии самостоятельного объекта.
  •  правильно понимать и разбираться в методах деления и умножения.

Чтобы занятия доставили ребенку удовольствие, следует возбуждать интерес к математике в ситуациях в быту, а не только в процессе учебы.

Поэтому тренируйте наблюдательность у ребенка, придумывайте аналогии математических действий во время игр, в процессе конструирования либо же в простых наблюдениях за природой.

vremya-sovetov.ru



О сайте

Онлайн-журнал "Автобайки" - первое на постсоветском пространстве издание, призванное осветить проблемы радовых автолюбителей с привлечение экспертов в области автомобилестроения, автоюристов, автомехаников. Вопросы и пожелания о работе сайта принимаются по адресу: Онлайн-журнал "Автобайки"