Разница между изометрией и аксонометрией. Изометрия сколько градусов


Чем отличается изометрия от аксонометрии

Отображать различные геометрические предметы с помощью чертежей и посредством компьютерной графики можно с применением принципов изометрии и аксонометрии. В чем специфика каждого из них?

Что представляет собой аксонометрия?

Под аксонометрией или аксонометрической проекцией понимается способ графического отображения тех или иных геометрических предметов посредством параллельных проекций.

Аксонометрия

Геометрический предмет в данном случае чаще всего рисуется с использованием определенной системы координат — так, чтобы та плоскость, на которую он проецируется, не соответствовала положению плоскости других координат соответствующей системы. Получается, что предмет отображается в пространстве посредством 2 проекций и выглядит объемно.

При этом по той причине, что плоскость отображения предмета не расположена строго параллельно какой-либо из осей системы координат, отдельные элементы соответствующего отображения могут искажаться — по одному из 3 следующих принципов.

Во-первых, искажение элементов отображения предметов может наблюдаться по всем 3 осям, используемым в системе, в равной величине. В этом случае фиксируется изометрическая проекция предмета, или изометрия.

Во-вторых, искажение элементов может наблюдаться только по 2 осям в равной величине. В этом случае наблюдается диметрическая проекция.

В-третьих, искажение элементов может фиксироваться как различающееся по всем 3 осям. В этом случае наблюдается триметрическая проекция.

Рассмотрим, таким образом, специфику первого типа искажений, формируемых в рамках аксонометрии.

к содержанию ↑

Что представляет собой изометрия?

Итак, изометрия — это разновидность аксонометрии, которая наблюдается при прорисовке предмета в случае, если искажение его элементов по всем 3 осям координат одинаковое.

Изометрия

Рассматриваемый вид аксонометрической проекции активно применяется в промышленном проектировании. Он позволяет хорошо просматривать те или иные детали в рамках чертежа. Распространено использование изометрии и при разработке компьютерных игр: с помощью соответствующего типа проекции становится возможным эффективно отображать трехмерные картинки.

Можно отметить, что в сфере современных промышленных разработок под изометрией в общем случае понимается прямоугольная проекция. Но иногда она может быть представлена и в косоугольной разновидности.

к содержанию ↑

Сравнение

Главное отличие изометрии от аксонометрии заключается в том, что первый термин соответствует проекции, являющейся только лишь одной из разновидностей той, которая обозначается вторым термином. Изометрическая проекция, таким образом, существенно отличается от других разновидностей аксонометрии — диметрии и триметрии.

Отобразим более наглядно то, в чем разница между изометрией и аксонометрией, в небольшой таблице.

к содержанию ↑

Таблица

ИзометрияАксонометрия
Что общего между ними?
Изометрия — разновидность аксонометрии, способ графического отображения предметов с помощью параллельных проекций
В чем разница между ними?
Характеризуется равенством искаженных элементов проекции по всем 3 осям используемой системы координатМожет быть представлена также диметрией (равенством искажений по 2 осям), триметрией (отсутствием равенства искажений при их сопоставлении по 3 осям)

thedifference.ru

Построение аксонометрического изображения детали

Построение аксонометрического изображения детали, чертеж которой приведен на Рис.а.

Рис.а

Все аксонометрические проекции должны выполняться по ГОСТ 2.317-68.

Аксонометрические проекции получаются проецированием предмета и связанной с ним системы координат на одну плоскость проекций. Аксонометрии делятся на прямоугольные и косоугольные.

Для прямоугольных аксонометрических проекций проецирование осуществляется перпендикулярно плоскости проекций, причем предмет располагается так, чтобы были видны все три плоскости предмета. Это возможно, например, при расположении осей, как на прямоугольной изометрической проекции, для которой все оси проекций располагаются под углом 120 градусов (см. рис.1). Слово «изометрическая» проекция означает, что коэффициент искажения по всем трем осям одинаковый. Согласно стандарту коэффициент искажения по осям можно принять равным 1. Коэффициент искажения – это отношение размера отрезка проекции к истинному размеру отрезка на детали, измеренного вдоль оси.

Рис.1

Построим аксонометрию детали. Для начала зададим оси, как для прямоугольной изометрической проекции. Начнем с основания. Отложим по оси х величину длины детали 45, а по оси у величину ширины детали 30. Из каждой точки четырехугольника поднимем верх вертикальные отрезки на величину высоты основания детали 7 (Рис.2). НА аксонометрических изображениях при нанесении размеров выносные линии проводят параллельно аксонометрическим осям, размерные линии – параллельно измеряемому отрезку.

Рис.2.

 

Далее проводим диагонали верхнего основания и находим точку, через которую будет проходить ось вращения цилиндра и отверстия. Невидимые линии нижнего основания стираем, чтобы они не мешали нашему дальнейшему построению (Рис.3)

.

Рис.3

Недостаток прямоугольной изометрической проекции заключается в том, что окружности во всех плоскостях будут проецироваться на аксонометрическом изображении в эллипсы. Поэтому сначала научимся строить приближенно эллипсы.

Если вписать окружность в квадрат, то у нее можно отметь 8 характерных точек: 4 точки касания окружности и середины стороны квадрата и 4 точки пересечения диагоналей квадрата с окружностью (Рис.4,а). На рис.4,в и рис.4,б показан точный способ построения точек пересечения диагонали квадрата с окружностью. На рис.4,д показан приближенный способ. При построении аксонометрические проекции половина диагонали четырехугольника, в который спроецируется квадрат, разделится в таком же соотношении.

Переносим эти свойства на нашу аксонометрию (рис.5). Строим проекцию четырехугольника, в которую проецируется квадрат. Далее строим эллипс рис.6.

Далее поднимаемся на высоту 16мм и переносим туда эллипс (Рис.7). Убираем лишние линии. Переходим к построению отверстий. Для этого строим на верху эллипс, в который спроецируется отверстие диаметром 14 (Рис.8). Далее, чтобы показать отверстие диаметром 6мм необходимо мысленно вырезать четверть детали. Для этого построим середину каждой стороны, как на рис.9. Далее строим эллипс, соответствующий окружности диаметра 6 на нижнем основании, а затем на расстоянии 14 мм от верхней части детали рисуем уже два эллипса (один соответствующий окружности диаметром 6, а другой соответствующий окружности диаметром 14) Рис.10. Далее выполняем разрез четверти детали и убираем невидимые линии (Рис.11).

Перейдем к построению ребра жесткости. Для этого на верхней плоскости основания отмеряем 3 мм от края детали и проводим отрезок длиной половине толщины ребра (1.5мм) (Рис.12), также намечаем ребро на дальней стороне детали. Угол 40 градусов нам при построении аксонометрии не подходит, поэтому рассчитываем второй катет (он будет равен 10.35мм) и по нему строим вторую точку угла по плоскости симметрии. Чтобы построить границу ребра, строим прямую на расстоянии 1.5мм от оси на верхней плоскости детали, затем проводим линии параллельно оси х до пересечения с внешним эллипсом и опускаем вертикальную прямую. Через нижнюю точку границы ребра проводим прямую параллельно ребру по плоскости разреза (Рис.13) до пересечения с вертикальной прямой. Дальше соединяем точку пересечения с точкой в плоскости разреза. Для построения дальнего ребра проводим прямую параллельную оси Х на расстоянии 1.5мм до пересечения с внешним эллипсом. Дальше находим, на каком расстоянии находится верхняя точка границы ребра (5.24мм) и такое же расстояние откладываем на вертикальной прямой с дальней стороны детали (см. Рис.14) и соединяем с дальней нижней точкой ребра.

Рис.4

 

Рис.5

Рис.6

 

Рис.7

Рис.8

Рис.9

Рис.10

Рис.11

Рис.12

Рис. 13

Рис.14

 

Убираем лишние линии и штрихуем плоскости сечений. Линии штриховки сечений в аксонометрических проекциях наносят параллельно одной из диагоналей проекций квадратов, лежащих в соответствующих координатных плоскостях, стороны которых параллельны аксонометрическим осям (Рис.15).

Рис.15

 

Для прямоугольной изометрической проекции линии штриховки будут параллельны линиям штриховки, показанным на схеме в правом верхнем углу (Рис.16). Осталось изобразить боковые отверстия. Для этого размечаем центры осей вращения отверстий, и строим эллипсы, как было указано выше. Аналогично строим радиусы скруглений (Рис.17). Итоговая аксонометрия показана на рис.18.

Рис.16

 

 

Рис.17

Для косоугольных проекций проецирование осуществляется под углом к плоскости проекций, отличным от 90 и 0 градусов. Примером косоугольной проекции может служить косоугольная фронтальная диметрическая проекция. Она хороша тем, что на плоскость заданную осями X и Z окружности, параллельные этой плоскости будут проецироваться в истинную величину (угол между осями X и Z 90 градусов, ось Y наклонена под углом 45 градусов к горизонту). «Диметрическая» проекция означает, что коэффициенты искажения по двум осям X и Z одинаковый, по оси Y коэффициент искажения меньше в два раза.

При выборе аксонометрической проекции необходимо стремиться, чтобы наибольшее количество элементов проецировалось без искажения. Поэтому при выборе положения детали в косоугольной фронтальной диметрической проекции ее надо расположить так, чтобы оси цилиндра и отверстий были перпендикулярны фронтальной плоскости проекций.

Схема расположения осей и аксонометрическое изображение детали «Стойка» в косоугольной фронтальной диметрической проекции приведена на рис.18.

 

Рис.18

Рис.19

Похожие статьи:

poznayka.org

Аксонометрические проекции. Изометрическая проекция - Черчение

Для тoгo чтобы получить аксонометрическую проекцию пред­мета (рис. 106), необходимо мысленно: поместить предмет в сис­тему координат; выбрать аксонометрическую плоскость проекций и расположить предмет перед ней; выбрать направление парал­лельных проецирующих лучей, которое не должно совпадать ни с одной из аксонометрических осей; направить проецирующие лучи через все точки предмета и координатные оси до пересечения с аксонометрической плоскостью проекций, получив тем самым изображение проецируемого предмета и координатных осей.

На аксонометрической плоскости проекций получают изобра­жение — аксонометрическую проекцию предмета, а также про­екции осей систем координат, которые называют аксонометриче­скими осями.

Аксонометрической проекцией называется изображение, по­лученное на аксонометрической плоскости в результате парал­лельного проецирования предмета вместе с системой координат, которое наглядно отображает его форму.

Система координат состоит из трех взаимно пересекающихся плоскостей, которые имеют фиксированную точку — начало координат (точку О) и три оси (X, У, Z), исходящие из нее и расположенные под прямым углом друг к другу. Сис­тема координат позволяет производить измерения по осям, определяя положение предметов в пространстве.

Рис. 106. Получение аксонометрической (прямоугольной изометрической) проекции

 

Можно получить множество аксонометрических проекций, по- разному располагая предмет перед плоскостью и выбирая при этом различное направление проецирующих лучей (рис. 107).

Наиболее употребляемой является так называемая прямо­угольная изометрическая проекция (в дальнейшем будем использовать ее сокращенное название — изометрическая проек­ция). Изометрической проекцией (см. рис. 107, а) называется та­кая проекция, у которой коэффициенты искажения по всем трем осям равны, а углы между аксонометрическими осями составляют 120°. Изометрическая проекция получается с помощью па­раллельного проецирования.

Рис. 107. Аксонометрические проекции, установленные ГОСТ 2.317—69: а — прямоугольная изометрическая проекция; б — прямоугольная диметрическая проекция; в — косоугольная фронтальная изометриче­ская проекция; г — косоугольная фронтальная диметрическая проекция

Рис. 107. Продолжение: д — косоугольная горизонтальная изометриче­ская проекция

 

При этом проецирующие лучи пер­пендикулярны аксонометрической плоскости проекций, а коор­динатные оси одинаково наклонены к аксонометрической плоско­сти проекций (cм. рис. 106). Если сравнить линейные размеры предмета и соответствующие им размеры аксонометрического изображения, то можно увидеть, что на изображении эти размеры меньше, чем действительные. Величины, показывающие отноше­ние размеров проекций отрезков прямых к действительным их размерам, называют коэффициентами искажения. Коэффициен­ты искажения (К) по осям изометрической проекции одинаковы и равны 0,82, однако для удобства построения используют так называемые практические коэффициенты искажения, которые равны единице (рис. 108).

Рис. 108. Положение осей и коэффициенты искажения изометрической проекции

 

Существуют изометрические, диметрические и триметрические проекции. К изометрическим проекциям относятся такие проекции, которые имеют одинаковые коэффициенты искажения по всем трем осям. Диметрическими проекциями называются такие проекции, у которых два коэффициента искажения по осям одинаковые, а величина третьего отличается от них. К триметрическим проекциям относятся проекции, у которых все коэффици­енты искажения различны.

cherch.ru

Изометрическая проекция - это... Что такое Изометрическая проекция?

Стол в прямоугольной изометрической проекции

Изометри́ческая прое́кция — это разновидность аксонометрической проекции, при которой в отображении трёхмерного объекта на плоскость коэффициент искажения (отношение длины спроектированного на плоскость отрезка, параллельного координатной оси, к действительной длине отрезка) по всем трём осям один и тот же. Слово «изометрическая» в названии проекции пришло из греческого языка и означает «равный размер», отражая тот факт, что в этой проекции масштабы по всем осям равны. В других видах проекций это не так.

Изометрическая проекция используется в машиностроительном черчении и САПР для построения наглядного изображения детали на чертеже, а также в компьютерных играх для трёхмерных объектов и панорам.

Необходимо отметить, что параллельные проекции, разновидностью которых являются аксонометрические и, в том числе, изометрические проекции, делятся также на ортогональные (перпендикулярные), с направлением проекции перпендикулярным к плоскости проекции, и косоугольные, с углом между направлением и плоскостью, отличным от прямого. По советским стандартам (см. ниже) аксонометрические проекции могут быть и ортогональными, и косоугольными[1]. По западным же стандартам, аксонометрические проекции являются только ортогональными, а косоугольные проекции рассматриваются отдельно.[источник не указан 1314 дней] В результате, по западным стандартам изометрическая проекция определяется более узко и, помимо равенства масштабов по осям, включает условие равенства 120° углов между проекциями любой пары осей. Во избежание путаницы далее, если не указано иное, под изометрической проекцией будет подразумеваться только прямоугольная изометрическая проекция.

Стандартные изометрические проекции[1]

  • Расположение осей координат в изометрических проекциях…

  • ...прямоугольной

  • ...косоугольной фронтальной

  • ...косоугольной горизонтальной

Прямоугольная (ортогональная) изометрическая проекция

В прямоугольной изометрической проекции аксонометрические оси образуют между собой углы в 120°, ось Z' направлена вертикально. Коэффициенты искажения () имеют числовое значение . Как правило, для упрощения построений изометрическую проекцию выполняют без искажений по осям, то есть коэффициент искажения принимают равным 1, в этом случае получают увеличение линейных размеров в раза.

Косоугольная фронтальная изометрическая проекция

Ось Z' направлена вертикально, угол между осью X' и Z' равен 90°, ось Y' с углом наклона 135° (допускается 120° и 150°) от оси Z'.

Фронтальная изометрическая проекция выполняется по осям X', Y' и Z' без искажения.

Кривые параллельные фронтальной плоскости проецируются без искажений.

Косоугольная горизонтальная изометрическая проекция

Ось Z' направлена вертикально, между осью Z' и осью Y' угол наклона равен 120° (допускается 135° и 150°), при этом сохраняется угол между осями X' и Y' равным 90°.

Горизонтальную изометрическую проекцию выполняют без искажения по осям X', Y' и Z'.

Кривые, параллельные горизонтальной плоскости[2] проецируются без искажений.

Визуализация

Изометрический вид объекта можно получить, выбрав направление обзора таким образом, чтобы углы между проекцией осей x, y, и z были одинаковы и равны 120°. К примеру, если взять куб, это можно выполнить направив взгляд на одну из граней куба, после чего повернув куб на ±45° вокруг вертикальной оси и на ±arcsin (tan 30°) ≈ 35.264° вокруг горизонтальной оси. Обратите внимание: на иллюстрации изометрической проекции куба контур проекции образует правильный шестиугольник — все рёбра равной длины и все грани равной площади.

Подобным же образом изометрический вид может быть получен, к примеру, в редакторе трёхмерных сцен: начав с камерой, выровненной параллельно полу и координатным осям, её нужно повернуть вниз на ≈35.264° вокруг горизонтальной оси и на ±45° вокруг вертикальной оси.

Другой путь визуализации изометрической проекции заключается в рассмотрении вида кубической комнаты с верхнего угла с направлением взгляда в противолежащий нижний угол. Ось x здесь направлена диагонально вниз и вправо, ось y — диагонально вниз и влево, ось z — прямо вверх. Глубина также отражается высотой картинки. Линии, нарисованные вдоль осей, имеют угол 120° между собой.

Матричные преобразования

Имеется 8 различных вариантов получения изометрической проекции в зависимости от того, в какой октант смотрит наблюдатель. Изометрическое преобразование точки в трёхмерном пространстве в точку на плоскости при взгляде в первый октант может быть математически описано с помощью матриц поворота следующим образом. Вначале, как объяснено в разделе Визуализация, выполняется поворот вокруг горизонтальной оси (здесь x) на α = arcsin (tan 30°) ≈ 35.264° и вокруг вертикальной оси (здесь y) на β = 45°:

Затем применяется ортогональная проекция на плоскость x-y:

Другие семь возможных видов получаются поворотом к противостоящим сторонам и/или инверсией направления взгляда.[3]

Ограничения аксонометрической проекции

Изометрический рисунок с голубым шаром на два уровня выше красного

Как и в других видах параллельных проекций, объекты в аксонометрической проекции не выглядят больше или меньше при приближении или удалении от наблюдателя. Это полезно в архитектурных чертежах и удобно в спрайто-ориентированных компьютерных играх, но, в отличие от перспективной (центральной) проекции, приводит к ощущению искривления, поскольку наши глаза или фотография работают иначе.

Это также легко приводит к ситуациям, когда глубину и высоту невозможно оценить, как показано на иллюстрации справа. В этом изометрическом рисунке голубой шар на два уровня выше красного, но это нельзя увидеть, если смотреть только на левую половину картинки. Если выступ, на котором находится голубой шар, расширить на один квадрат, то он окажется точно рядом с квадратом, на котором находится красный шар, создавая оптическую иллюзию, будто оба шара на одном уровне.

Дополнительная проблема, специфичная для изометрической проекции — сложность определения, какая сторона объекта наблюдается. При отсутствии теней и для объектов, которые относительно перпендикулярны и соразмерны, сложно определить, какая сторона является верхней, нижней или боковой. Это происходит из-за приблизительно равных по размеру и площади проекций такого объекта.

Большинство современных компьютерных игр избегают этого за счёт отказа от аксонометрической проекции в пользу перспективного трёхмерного рендеринга. Однако эксплуатация проекционных иллюзий популярна в оптическом искусстве — таком, как работы из серии «невозможной архитектуры» Эшера. Водопад (1961) — хороший пример, в котором строение в основном изометрическое, в то время как блеклый фон использует перспективную проекцию. Другое преимущество заключается в том, что в черчении даже новички легко могут строить углы в 60° с помощью только циркуля и линейки.

Изометрическая проекция в компьютерных играх и пиксельной графике

Рисунок телевизора в почти-изометрической пиксельной графике. У пиксельного узора видна пропорция 2:1

В области компьютерных игр и пиксельной графики аксонометрическая проекция была весьма популярна в силу лёгкости, с которой двухмерные спрайты и плиточная графика (англ.) могли быть использованы для представления трёхмерной игровой среды — поскольку во время перемещения по игровому полю объекты не меняют размер, компьютеру не требуется масштабировать спрайты или выполнять вычисления, необходимые для моделирования визуальной перспективы. Это позволяло старым 8-битным и 16-битным игровым системам (и, позднее, портативным игровым системам) легко отображать большие трёхмерные пространства. И хотя неразбериха с глубиной (см. выше) иногда могла быть проблемой, хороший дизайн игры способен её смягчить. С приходом более мощных графических систем аксонометрическая проекция стала терять свои позиции.

Проекция в компьютерных играх обычно несколько отличается от «истинной» изометрической в силу ограничений растровой графики — линии по осям x и y не имели бы аккуратного пиксельного узора, если бы рисовались под углом в 30° к горизонтали. Хотя современные компьютеры могут устранять эту проблему с помощью сглаживания, ранее компьютерная графика не поддерживала достаточную цветовую палитру или не располагала достаточной мощностью процессоров для его выполнения. Вместо этого использовалась пропорция пиксельного узора 2:1 для рисования осевых линий x и y, в результате чего эти оси располагались под углом arctan 0,5 ≈ 26,565° к горизонтали. (Игровые системы с неквадратными пикселями могли, однако, приводить к другим углам, включая полностью изометрические). Поскольку здесь из трёх углов между осями (116,565°, 116,565°, 126,87°) равны только два, такой вид проекции более точно характеризуется как вариация диметрической проекции. Однако большинство представителей сообществ компьютерных игр и растровой графики продолжает называть эту проекцию «изометрической перспективой». Также, часто используются термины «вид 3/4 (англ.)» и «2.5D».

Термин применялся и к играм, не использующим пропорцию 2:1, общую для многих компьютерных игр. Fallout[4] и SimCity 4[5], в которых используется триметрическая проекция, были отнесены к «изометрическим». Игры с косоугольной проекцией, такие как The Legend of Zelda: A Link to the Past[6] и Ultima Online[7], а также игры с перспективной проекцией с видом «с воздуха» (англ.)русск., такие как The Age of Decadence (англ.)[8] и Silent Storm[9], также иногда относят к изометрическим или «псевдо-изометрическим».

Кадр из игры «echochrome»

Интересный пример использования особенностей изометрической проекции наблюдается в игре echochrome (яп. 無限回廊 муген кайро:?). Слоган игры — «В этом мире то, что ты видишь, становится реальностью». Смысл игры заключается в том, что иллюзия, возникающая при взгляде на изометрически построенный трёхмерный уровень с определённой точки, перестаёт быть иллюзией. Например, если посмотреть на уровень таким образом, чтобы площадки, находящиеся на разной высоте, выглядели так, будто они находятся на одной и той же высоте (см. изображение с синим и красным шарами из предыдущего раздела), игрой они будут расцениваться как находящиеся на одной высоте, и человек (игрок) сможет запросто «перешагнуть» с одной площадки на другую. Затем, если повернуть карту уровня и посмотреть на конструкцию так, чтобы было отчётливо видно разницу в высоте, можно понять, что в действительности человек «перешагнул» на другую высоту, пользуясь тем, что изометрическая иллюзия на какой-то момент стала реальностью. На приведённом в качестве иллюстрации кадре из игры положение площадки, находящейся вверху лестницы, можно представить двояко: в одном случае она находится на одной высоте с площадкой, на которой находится игрок (можно перешагнуть), а в другом случае — под ней (можно спрыгнуть через чёрное отверстие). Оба случая будут одновременно являться правдой. Очевидно, этот эффект достигается отсутствием перспективы в изометрии.

История изометрических компьютерных игр

Q*bert (1982), одна из первых игр с изометрической графикой

Первыми играми, использующими изометрическую проекцию, были аркадные игры начала 1980-х: так, Q*bert[10] и Zaxxon (англ.)[11] выпущены в 1982 году. Q*bert показывает статичную пирамиду, нарисованную в изометрической перспективе, по которой должен прыгать управляемый игроком персонаж. Zaxxon предлагает прокручиваемые изометрические уровни, над которыми летает управляемый игроком самолётик. Год спустя, в 1983 году, была выпущена аркадная игра Congo Bongo (англ.)[12], работавшая на тех же игровых автоматах, что и Zaxxon. В этой игре персонаж перемещается по большим изометрическим уровням, включающим трёхмерные подъёмы и спуски. То же самое предлагается и в аркадной игре Marble Madness (1984).

С выходом Ant Attack (англ.) (1983) для ZX Spectrum изометрические игры перестали быть изюминкой только аркадных игровых автоматов и пришли также и в домашние компьютеры. Журнал CRASH присудил этой игре 100 % в категории «графика» за новую «трёхмерную» технологию.[13] Год спустя для ZX была выпущена игра Knight Lore, которая расценивается как революционное произведение[14], определившее последующий жанр изометрических квестовых игр[15]. На домашних компьютерах было отмечено столько изометрических игр-последователей Knight Lore, что эта игра стала считаться вторым наиболее клонируемым образцом программного обеспечения после текстового редактора WordStar (англ.).[16] Среди клонов большой успех имела игра Head Over Heels (1987)[17]. Однако, изометрическая перспектива не ограничивалась только аркадами и квестовыми играми — например, стратегическая игра Populous (1989) также использовала изометрическую перспективу.

На протяжении 1990-х некоторые очень успешные игры вроде Civilization II и Diablo использовали фиксированную изометрическую перспективу. С приходом 3D ускорителей на персональные компьютеры и игровые консоли игры с трёхмерной перспективой в основном переключились на полноценную трёхмерность вместо изометрической перспективы. Это можно видеть в преемницах вышеназванных игр — начиная с Civilization IV в этой серии используется полная трёхмерность. Diablo II, как и ранее, использует фиксированную перспективу, но опционально применяет перспективное масштабирование спрайтов на расстоянии, получая псевдо-трёхмерную перспективу.[18]

См. также: Категория:Компьютерные игры с изометрической графикой

Примечания

Ссылки

  • Introduction to 3 Dimensional graphics  (англ.). Blueprint project. IDER group, Manufactuing Systems Engineering Centre, University of Hertfordshire. — Пояснения и учебник по рисованию в изометрической перспективе из Хертфорширдского университета.(недоступная ссылка — история) Проверено 29 сентября 2008.
  • Herbert Glarner. Isometric Projection  (англ.) (19 марта 2007). Архивировано из первоисточника 19 февраля 2012. Проверено 29 сентября 2008.
  • PixelDam  (англ.). — A collaborative pixelart community. Архивировано из первоисточника 19 февраля 2012. Проверено 29 сентября 2008.
  • Tom Gersic. Rendering Isometric Tiles in Blender 3D  (англ.). — Учебник с примерами по созданию изометрических плиток в программе Blender 3D. Архивировано из первоисточника 19 февраля 2012. Проверено 29 сентября 2008.

Литература

  • Богданов В. Н., Малежик И. Ф., Верхола А. П. и др. Справочное руководство по черчению. — М.: Машиностроение, 1989. — С. 864. — ISBN 5-217-00403-7
  • Фролов С. А. Начертательная геометрия. — 2-е изд., перераб. и доп. — М.: Машиностроение, 1983. — С. 240.

dic.academic.ru

Ответы@Mail.Ru: Что такое изометрия?

Изометрическая проекция — аксонометрическая проекция, при которой длины единичных отрезков на всех трёх осях одинаковы. Применяется в машиностроительном черчении для отображения внешнего вида детали, а также в компьютерных играх. Изометрия (математика) — преобразование метрического пространства, сохраняющее расстояние.

Tермин из черчения, когда тeло представлeno в объемном виде по осям координат.. . угол между осями 120градусов.

Изометри&#769;ческая прое&#769;кция — это разновидность аксонометрической проекции, при которой в отображении трёхмерного объекта на плоскость коэффициент искажения (отношение длины спроектированного на плоскость отрезка, параллельного координатной оси, к действительной длине отрезка) по всем трём осям один и тот же. Слово «изометрическая» в названии проекции пришло из греческого языка и означает «равный размер» , отражая тот факт, что в этой проекции масштабы по всем осям равны. В других видах проекций это не так. Изометрическая проекция используется в машиностроительном черчении и САПР для построения наглядного изображения детали на чертеже, а также в компьютерных играх для трёхмерных объектов и панорам. Расположение осей координат в изометрических проекциях прямоугольной <img src="//otvet.imgsmail.ru/download/b552d045742d0afbf2bd5a54bb1c29a4_i-99.jpg" ><img src="//content.foto.my.mail.ru/mail/andruhanchiks/_answers/i-100.jpg" ><img src="//otvet.imgsmail.ru/download/b552d045742d0afbf2bd5a54bb1c29a4_i-101.jpg" >

touch.otvet.mail.ru

3.1. Прямоугольная изометрия

Прямоугольная изометрическая проекция образуется при прямоугольном проецировании предмета и связанных с ним координатных осей на плоскость аксонометрических проекций П', одинаково наклоненную к каждой координатной оси.

В этом случае все три коэффициента искажения будут равны между собой, так как равны углы наклона координатных осей к плоскости П', то есть u = v = w.

Углы между аксонометрическими осями будут равны 120° (рис. 2, а). Ось Z всегда проводят вертикально. Оси Х и У располагают под углами 30° к линии горизонта.

Согласно основной формуле аксонометрии (2), действительные (точные) коэффициенты искажения для прямоугольной изометрической проекции u = v = w = 0,82.

Следовательно, при образовании данной проекции натуральные размеры вдоль координатных осей сокращаются в ≈ 0,82 раза.

В практике (ГОСТ 2.317–69) построения аксонометрических изображений дробные коэффициенты заменяют приведенными коэффициентами искажения (целыми числами) – единицами: U = V = = W = 1.

В этом случае изображение получается увеличенным в 1,22 раза.

Аксонометрический масштаб такого изображения 1,22 : 1.

Равные окружности, расположенные в координатных или параллельных им плоскостях, будут проецироваться в равные по величине эллипсы (рис. 2, б).

а) б)

Рис. 2

Длины осей эллипсов 1, 2, 3 при диаметре окружности D в зависимости от принятых коэффициентов искажения приведены в табл. 1.

Таблица 1

Показатели

Действительные

Приведенные

Коэффициент искажения

0,82

1

Большая ось эллипса

D

1,22 D

Малая ось эллипса

0,58 D

0,71 D

3.2. Прямоугольная диметрия

Прямоугольная диметрическая проекция образуется при прямоугольном проецировании предмета и связанных с ним координатных осей на плоскость аксонометрических проекций, одинаково наклоненную к двум координатным осям, третья ось располагается под другим углом.

В результате два коэффициента искажения будут равны между собой и не равны третьему. В прямоугольной диметрической проекции (ГОСТ 2.317–69) показатели искажения по осям Х и Z равны между собой u = w, а показатель искажения по оси У вдвое меньше:

v = u/2.

В этом случае углы между аксонометрическими осями будут: между Х и Z, Х и У – 131°25', У и Z – 97°10'. По отношению к горизонтальной линии ось Х направлена под углом 7°10', а ось У – под углом 41°25' (рис. 3, а).

Согласно основной формуле аксонометрии (2), действительные (точные) коэффициенты искажения для прямоугольной диметрической проекции u = w = 0,94; v = 0,47.

В практике (ГОСТ 2.317–69) используют приведенные коэффициенты искажения: U = W = 1; V = 0,5.

В этом случае изображение получается увеличенным в 1,06 раза.

Аксонометрический масштаб такого изображения 1,06 : 1.

а) б)

Рис. 3

Равные окружности будут проецироваться в одинаковые эллипсы для плоскостей ХОУ и УОZ. Окружность, расположенная в плоскости ХОZ, будет проецироваться в другой по величине эллипс.

Длины осей эллипсов 1, 2, 3 при диаметре окружности D в зависимости от принятых коэффициентов искажения приведены в табл. 2.

Таблица 2

Показатели

Действительные

Приведенные

Коэффициент искажения

0,47 и 0,94

0,5 и 1

Большая ось эллипсов 1, 2, 3

D

1,06 D

Малая ось эллипса 1

0,9 D

0,95 D

Малая ось эллипсов 2, 3

0,33 D

0,35 D

studfiles.net

3.5. Аксонометрия

Рис. 65

полученные отметки проводим прямые, параллельные первым двум. Затем проводим прямую, пересекающую все шкалы под произвольным углом. В точке пересечения ее с каждой прямой будет начало отсчета соответствующей шкалы. Верхняя шкала будет с коэффициентом 1,22, нижняя – с коэффициентом 0,71.

Размеры, взятые с чертежа, откладываем на натуральной шкале и из точки А проецируем их на нужную шкалу.

Прямоугольная диметрия (рис. 64,б). Построения выполняются так же, как в изометрии, с той лишь разницей, что коэффициенты берем 1,06; 0,35; 0,5; 0,95.

Почему взяты именно такие коэффициенты станет ясно, когда рассмотрим аксонометрию окружности.

Аксонометрия окружности

Окружность в аксонометрии изображается в виде эллипса (рис. 65), который характеризуется двумя сопряженными диаметрами ЕF иКL

идвумя осями: АВ (большая ось) иСD (малая ось). Сопряженные диаметры являются изображением взаимно перпендикулярных диаметров окружности

инаправлены вдоль аксонометрических осей.

Оси эллипса взаимно перпендикулярны

K

C

F

 

(АВ CD) и определяют ориентацию эллипса

 

 

 

 

в каждой аксонометрической плоскости.

 

 

 

В прямоугольной аксонометрии малая

A

 

B

ось эллипса всегда параллельна той аксоно-

 

 

 

 

метрической оси, которая не лежит в плоско-

E

 

L

сти эллипса. Так, если эллипс расположен в

D

 

 

плоскости х′О′у′, то малая ось параллельнаz′,

 

 

 

 

 

в плоскости х′О′z′ – параллельнау ′, в плоскостиу′О′z′ – параллельнах′.

На рис. 66, а показана ориентация осей эллипса и их размеры для прямоугольной изометрии. На рис. 66,б – для прямоугольной диметрии.

Приемы построения эллипса

Эллипс может быть построен как лекальная и какциркульная кривая. Лекальная кривая строится по точкам, которые затем плавно соеди-

няются от руки или при помощи лекала (способ 1).

Циркульная кривая строится при помощи циркуля как кривая, состоящая из сопрягающихся дуг окружностей (способы 2, 3).

Рассмотрим построение эллипса в аксонометрической плоскости х′О′y′. Аналогичными будут построения в других плоскостях. Только необходимо учитывать ориентацию осей эллипса (как показано на рис. 66).

studfiles.net



О сайте

Онлайн-журнал "Автобайки" - первое на постсоветском пространстве издание, призванное осветить проблемы радовых автолюбителей с привлечение экспертов в области автомобилестроения, автоюристов, автомехаников. Вопросы и пожелания о работе сайта принимаются по адресу: Онлайн-журнал "Автобайки"