Геометрическое приложение определенного интеграла (площадь криволинейной трапеции). Изобразите криволинейную трапецию ограниченную линиями и найдите ее площадь


Нахождение площади криволинейной трапеции – Сайт Александра Бабаева

Фигура, ограниченная графиком непрерывной неотрицательной на отрезке $[a;b]$ функции $f(x)$ и прямыми $y=0, \ x=a$ и $x=b$, называется криволинейной трапецией.

Площадь соответствующей криволинейной трапеции вычисляется по формуле:

$S=\int\limits_{a}^{b}{f(x)dx}.$ (*)

Задачи на нахождение площади криволинейной трапеции мы будем условно делить на $4$ типа. Рассмотрим каждый тип подробнее.

I тип: криволинейная трапеция задана явно. Тогда сразу применяем формулу (*).

Например, найти площадь криволинейной трапеции, ограниченной графиком функции $y=4-(x-2)^{2}$, и прямыми $y=0, \ x=1$ и $x=3$.

Нарисуем эту криволинейную трапецию.

Применяя формулу (*), найдём площадь этой криволинейной трапеции.

$S=\int\limits_{1}^{3}{\left(4-(x-2)^{2}\right)dx}=\int\limits_{1}^{3}{4dx}-\int\limits_{1}^{3}{(x-2)^{2}dx}=4x|_{1}^{3} – \left.\frac{(x-2)^{3}}{3}\right|_{1}^{3}=$

$=4(3-1)-\frac{1}{3}\left((3-2)^{3}-(1-2)^{3}\right)=4 \cdot 2 – \frac{1}{3}\left((1)^{3}-(-1)^{3}\right) = 8 – \frac{1}{3}(1+1) =$

$=8-\frac{2}{3}=7\frac{1}{3}$ (ед.$^{2}$).

II тип: криволинейная трапеция задана неявно. У этого случая обычно не задаются или задаются частично прямые $x=a, \ x=b$. В этом случае нужно найти точки пересечения функций $y=f(x)$ и $y=0$. Эти точки и будут точками $a$ и $b$.

Например, найти площадь фигуры, ограниченной графиками функций $y=1-x^{2}$ и $y=0$.

Найдём точки пересечения. Для этого приравняем правые части функций.

$1-x^{2}=0$

$x^{2}=1$

$x=\pm 1$

Таким образом, $a=-1$, а $b=1$. Нарисуем эту криволинейную трапецию.

Найдём площадь этой криволинейной трапеции.

$S=\int\limits_{-1}^{1}{\left(1-x^{2}\right)dx}=\int\limits_{-1}^{1}{1dx}-\int\limits_{-1}^{1}{x^{2}dx}=x|_{-1}^{1} – \left.\frac{x^{3}}{3}\right|_{-1}^{1}=$

$=(1-(-1))-\frac{1}{3}\left(1^{3}-(-1)^{3}\right)=2 – \frac{1}{3}\left(1+1\right) = 2 – \frac{2}{3} = 1\frac{1}{3}$ (ед.$^{2}$).

III тип: площадь фигуры, ограниченной пересечением двух непрерывных неотрицательных функций. Эта фигура не будет криволинейной трапецией, а значит с помощью формулы (*) её площадь не вычислишь. Как же быть? Оказывается, площадь этой фигуры можно найти как разность площадей криволинейных трапеций, ограниченных верхней функцией и $y=0$ ($S_{uf}$), и нижней функцией и $y=0$ ($S_{lf}$), где в роли $x=a, \ x=b$ выступают координаты по $x$ точек пересечения данных функций, т.е.

$S=S_{uf}-S_{lf}$. (**)

Самое главное при вычислении таких площадей – не “промахнуться” с выбором верхней и нижней функции.

Например, найти площадь фигуры, ограниченной функциями $y=x^{2}$ и $y=x+6$.

Найдём точки пересечения этих графиков:

$x^{2}=x+6$

$x^{2}-x-6=0$

По теореме Виета,

$x_{1}=-2, \ x_{2}=3.$

То есть, $a=-2, \ b=3$. Изобразим фигуру:

Таким образом, верхняя функция – $y=x+6$, а нижняя – $y=x^{2}$. Далее, найдём $S_{uf}$ и $S_{lf}$ по формуле (*).

$S_{uf}=\int\limits_{-2}^{3}{(x+6)dx}=\int\limits_{-2}^{3}{xdx}+\int\limits_{-2}^{3}{6dx}=\left.\frac{x^{2}}{2}\right|_{-2}^{3} + 6x|_{-2}^{3}= 32,5$ (ед.$^{2}$).

$S_{lf}=\int\limits_{-2}^{3}{x^{2}dx}=\left.\frac{x^{3}}{3}\right|_{-2}^{3} = \frac{35}{3}$ (ед.$^{2}$).

Подставим найденное в (**) и получим:

$S=32,5-\frac{35}{3}= \frac{125}{6}$ (ед.$^{2}$).

IV тип: площадь фигуры, ограниченной функцией (-ями), не удовлетворяющей(-ими) условию неотрицательности. Для того, чтобы найти площадь такой фигуры нужно симметрично относительно оси $Ox$ (иными словами, поставить “минусы” перед функциями) отобразить область и с помощью способов, изложенных в типах I – III, найти площадь отображённой области. Эта площадь и будет искомой площадью. Предварительно, возможно, вам придётся найти точки пересечения графиков функций.

Например, найти площадь фигуры, ограниченной графиками функций $y=x^{2}-1$ и $y=0$.

Найдём точки пересечения графиков функций:

$x^{2}-1=0.$

$x= \pm 1,$

т.е. $a=-1$, а $b=1$. Начертим область.

Симметрично отобразим область:

$y=0 \ \Rightarrow \ y=-0=0$

$y=x^{2}-1 \ \Rightarrow \ y= -(x^{2}-1) = 1-x^{2}$.

 Получится криволинейная трапеция, ограниченная графиком функции $y=1-x^{2}$ и $y=0$. Это задача на нахождение криволинейной трапеции второго типа. Мы её уже решали. Ответ был такой:  $S= 1\frac{1}{3}$ (ед.$^{2}$). Значит, площадь искомой криволинейной трапеции равна:

$S=1\frac{1}{3}$ (ед.$^{2}$).

babaev-an.ru

Площадь криволинейной трапеции.

Площадь криволинейной трапеции, ограниченной сверху графиком функции y=f (x), снизу — осью Ох, слева и справа прямыми х=a, x=b, находят по формуле Ньютона-Лейбница (ф. Н-Л):

Пример 1. Найти площадь криволинейной трапеции, ограниченной линиями: y=4x-x²; y=0; x=0; x=4.

Решение.  Строим графики данных линий.  (рис. 1).1) y=4x-x² — парабола (вида y=ax²+bx+c). Запишем данное уравнение в общем виде: y=-x²+4x. Ветви этой параболы направлены вниз, так как первый коэффициент а=-1<0.

Вершина параболы находится

в точке O′(m; n), где

О′(2; 4). Нули функции (точки пересечения графика с осью Ох) найдем из уравнения:

4х-х²=0.

Выносим х за скобки, получаем:  х(4-х)=0. Отсюда, х=0 или х=4.  Абсциссы точек найдены, ордината равна нулю — искомые точки: (0; 0) и (4; 0).

2) y=0 — это ось Ох; 3) х=0 — это ось Оy; 4) х=4 — прямая, параллельная оси Оy и отстоящая от нее на 4 единичных отрезка вправо.

Площадь построенной криволинейной трапеции находим по (ф. Н-Л). У нас f (x)=4x-x², a=0, b=4.

Кстати, если Вы подсчитаете все целые заштрихованные клетки и добавите к ним половину всех остальных клеток заштрихованной фигуры, то получите приближенное значение искомой площади. Действительно, если единичный отрезок равен одной клетке, то площадь квадратика со стороной, равной 1 клетке, равна 1·1=1 (кв. ед.). Сколько квадратиков — столько квадратных единиц и составляет площадь фигуры.

Пример 2. Найти площадь криволинейной трапеции, ограниченной линиями:

Решение. Строим графики данных линий. (рис. 2).

Площадь данной криволинейной трапеции:

 

Запись имеет метки: криволинейная трапеция

www.mathematics-repetition.com

Вычисление площадей фигур, ограниченных заданными линиями

Вычисление площади фигуры – это, пожалуй, одна из наиболее сложных задач теории площадей. В школьной геометрии учат находить площади основных геометрических фигур таких как, например, треугольник, ромб, прямоугольник, трапеция, круг и т.п. Однако зачастую приходится сталкиваться с вычислением площадей более сложных фигур. Именно при решении таких задач очень удобно использовать интегральное исчисление.

Определение.

Криволинейной трапецией называют некоторую фигуру G, ограниченную линиями y = f(x), у = 0, х = а и х = b, причем функция f(x) непрерывна на отрезке [а; b] и не меняет на нем свой знак (рис. 1). Площадь криволинейной трапеции можно обозначить S(G).

Определенный интеграл ʃаb f(x)dx для функции f(x), являющийся непрерывной и неотрицательной на отрезке [а; b], и есть площадь соответствующей криволинейной трапеции.

То есть, чтобы найти площадь фигуры G, ограниченной линиями y = f(x), у = 0, х = а и х = b, необходимо вычислить определенный интеграл  ʃаb f(x)dx.

Таким образом, S(G) = ʃаb f(x)dx.

В случае, если функция y = f(x) не положительна на [а; b], то площадь криволинейной трапеции может быть найдена по формуле S(G) = -ʃаb f(x)dx.

Пример 1.

Вычислить площадь фигуры, ограниченной линиями у = х3; у = 1; х = 2.

Решение.

Заданные линии образуют фигуру АВС, которая показана штриховкой на рис. 2.

Искомая площадь равна разности между площадями криволинейной трапеции DACE и квадрата DABE.

Используя формулу S = ʃаb f(x)dx = S(b) – S(a), найдем пределы интегрирования. Для этого решим систему двух уравнений:

{у = х3,{у = 1.

Таким образом, имеем х1 = 1 – нижний предел и х = 2 – верхний предел.

Итак, S = SDACE – SDABE = ʃ12 x3 dx – 1 = x4/4|12 – 1 = (16 – 1)/4 – 1 = 11/4 (кв. ед.).

Ответ: 11/4 кв. ед.

Пример 2.

Вычислить площадь фигуры, ограниченной линиями у = √х; у = 2; х = 9.

Решение.

Заданные линии образуют фигуру АВС, которая ограничена сверху графиком функции

у = √х, а снизу графиком функции у = 2. Полученная фигура показана штриховкой на рис. 3.

Искомая площадь равна S = ʃаb(√x – 2). Найдем пределы интегрирования: b = 9, для нахождения а, решим систему двух уравнений:

{у = √х,{у = 2.

Таким образом, имеем, что х = 4 = а – это нижний предел.

Итак, S = ∫49 (√x – 2)dx = ∫49 √x dx –∫49 2dx = 2/3 x√х|49 – 2х|49 = (18 – 16/3) – (18 – 8) = 2 2/3 (кв. ед.).

Ответ: S = 2 2/3 кв. ед.

Пример 3.

Вычислить площадь фигуры, ограниченной линиями у = х3 – 4х; у = 0; х ≥ 0.

Решение.

Построим график функции у = х3 – 4х при х ≥ 0. Для этого найдем производную у’:

y’ = 3x2 – 4, y’ = 0 при х = ±2/√3 ≈ 1,1 – критические точки.

Если изобразить критические точки на числовой оси и расставить знаки производной, то получим, что функция убывает от нуля до 2/√3 и возрастает от 2/√3 до плюс бесконечности. Тогда х = 2/√3 – точка минимума, минимальное значение функции уmin = -16/(3√3) ≈ -3.

Определим точки пересечения графика с осями координат:

если х = 0, то у = 0, а значит, А(0; 0) – точка пересечения с осью Оу;

если у = 0, то х3 – 4х = 0 или х(х2 – 4) = 0, или х(х – 2)(х + 2) = 0, откуда х1 = 0, х2 = 2, х3 = -2 (не подходит, т.к. х ≥ 0).

Точки А(0; 0) и В(2; 0) – точки пересечения графика с осью Ох.

Заданные линии образуют фигуру ОАВ, которая показана штриховкой на рис. 4.

Так как функция у = х3 – 4х принимает на (0; 2) отрицательное значение, то

S = |ʃ02 (x3 – 4x)dx|.

Имеем: ʃ02 (x3 – 4х)dx =(x4/4 – 4х2/2)|02= -4, откуда S = 4 кв. ед.

Ответ: S = 4 кв. ед.

Пример 4.

Найти площадь фигуры, ограниченной параболой у = 2х2 – 2х + 1, прямыми  х = 0, у = 0 и касательной к данной параболе в точке с абсциссой х0 = 2.

Решение.

Сначала составим уравнение касательной к параболе у = 2х2 – 2х + 1 в точке с абсциссой х₀ = 2.

Так как производная y’ = 4x – 2, то при х0 = 2 получим k = y’(2) = 6.

Найдем ординату точки касания: у0 = 2 · 22 – 2 · 2 + 1 = 5.

Следовательно, уравнение касательной имеет вид: у – 5 = 6(х – 2) или у = 6х – 7.

Построим фигуру, ограниченную линиями:

у = 2х2 – 2х + 1, у = 0, х = 0, у = 6х – 7.

Гу =  2х2 – 2х + 1 – парабола. Точки пересечения с осями координат: А(0; 1) – с осью Оу; с осью Ох – нет точек пересечения, т.к. уравнение  2х2 – 2х + 1 = 0 не имеет решений (D < 0). Найдем вершину параболы:

xb = -b/2a;

xb = 2/4 = 1/2;

yb = 1/2, то есть вершина параболы точка В имеет координаты В(1/2; 1/2).

Итак, фигура, площадь которой требуется определить, показана штриховкой на рис. 5.

Имеем: SОAВD = SOABC – SADBC.

Найдем координаты точки D из условия:

6х – 7 = 0, т.е. х = 7/6, значит DC = 2 – 7/6 = 5/6.

Площадь треугольника DBC найдем по формуле SADBC = 1/2 · DC · BC. Таким образом,

SADBC = 1/2 · 5/6 · 5 = 25/12 кв. ед.

Далее:

SOABC = ʃ02(2x2 – 2х + 1)dx = (2x3/3 – 2х2/2 + х)|02 = 10/3 (кв. ед.).

Окончательно получим: SОAВD = SOABC – SADBC = 10/3 – 25/12 = 5/4 = 1 1/4 (кв. ед).

Ответ: S = 1 1/4 кв. ед.

Мы разобрали примеры нахождения площадей фигур, ограниченных заданными линиями. Для успешного решения подобных задач нужно уметь строить на плоскости линии и графики функций, находить точки пересечения линий, применять формулу для нахождения площади, что подразумевает наличие умений и навыков вычисления определенных интегралов.

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

blog.tutoronline.ru

Геометрическое приложение определенного интеграла (площадь криволинейной трапеции).

Рассмотрим фигуру

Рис. 8.1. Криволинейная трапеция

Фигура, ограниченная снизу отрезком [a; b] оси Ox, сверху графиком непрерывной функции y = f(x) такой, что f (x) ≥ 0 при х [a; b] и f (x) > 0 при х (а; b), а с боков ограниченная отрезками прямых х = а и x = b, называется криволинейной трапецией.

Отрезок [a; b] называют основанием этой криволинейной трапеций.

Площадь криволинейной трапеции вычисляется по формуле:

 

Таким образом, геометрический смысл определенного интеграла заключается в вычислении площади криволинейной трапеции.

Приведём различные примеры криволинейной трапеции:

 

 

Рассмотрим основные способы вычисления площади криволинейной трапеции:

Алгоритм нахождения площади криволинейной трапеции:

1. Построить графики функции;

2. Определить пределы интегрирования a и b;

3. Выбрать и записать соответствующую формулу площади криволинейной трапеции;

4. Вычислить площадь криволинейной трапеции.

 

ПРИМЕР : Вычислить площадь криволинейной трапеции, ограниченной осью Ох, прямыми х = -1, х = 2 и параболой y = 9 - x2.

Решение: Построим график функции y = 9 - x2 и изобразим данную криволинейную трапецию:

y = 9 - x2 -парабола, ветви вниз,

координаты вершины:

(0 ; 9) - вершина

Точки пересечения с осью Ох:

9 - x2 = 0

-x2 = 9

x2 = 9 => x1/2 = 3

Проведём прямые х = - 1 и х = 2

f(x)=9 - x2 a = - 1 b = 2

Формула для вычисления площади криволинейной трапеции:

.

Ответ: Sкр.тр = 24(кв.ед)

Лекция 9. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

 

 

Похожие статьи:

poznayka.org

Определенный интеграл. Площадь криволинейной трапеции. Формула Ньютона-Лейбница. Задание 7

В этой статье мы будем учиться решать задачи на нахождение площади криволинейной трапеции.

Как всегда, начнем с теории. Как вы помните, неопределенный интеграл  от функции -  это множество всех первообразных :

В неопределенном интеграле не заданы границы интегрирования, и в результате нахождения неопределенного интеграла от функции мы получаем множество первообразных, отличающихся друг от друга на постоянную величину С.

Если заданы границы интегрирования, то мы получаем определенный интеграл:

Здесь число   - нижний предел интегрирования, число  - верхний предел интегрирования. Определенный интеграл - это ЧИСЛО, значение которого вычисляется по формуле Ньютона - Лейбница:

.

- это значение первообразной функции  в точке , и, соответственно,  - это значение первообразной функции  в точке .

Для нас с точки зрения решения задач важное значение имеет геометрический смысл определенного интеграла.

Рассмотрим фигуру, изображенную на рисунке:

 

Зеленая фигура, ограниченая сверху графиком функции , слева прямой , справа прямой , и снизу осью ОХ называется криволинейной трапецией.

Геометрический смысл определенного интеграла:

Определенный интеграл  - это число, равное площади криволинейной трапеции - фигуры, ограниченой сверху графиком положительной на отрезке   функции , слева прямой , справа прямой , и снизу осью ОХ.

Решим задачу из Открытого банка заданий для подготовки к ЕГЭ  по математике. 

Прототип Задания 7 (№ 323080)

На рисунке изображён график некоторой функции . Функция  — одна из первообразных функции . Найдите площадь закрашенной фигуры.

Закрашенная фигура представляет собой криволинейную трапецию, ограниченную сверху графиком функции , слева прямой , справа прямой , и снизу осью ОХ.

Площадь этой криволинейной трапеции вычисляется по формуле:

, где  - первообразная функции .

По условию задачи , поэтому, чтобы найти площадь фигуры, нам нужно найти значение первообразной в точке -8, в точке -10, и затем из первого вычесть второе.

Замечу, что в этих задачах очень часто возникают ошибки именно в вычислениях, поэтому советую аккуратно и подробно их записывать, и ничего не считать "в уме".

=

=

Ответ: 4

Посмотрите небольшую видеолекцию,  в которой решены все типы задач на первообразную:

 

 

И.В. Фельдман, репетитор по математике.

ege-ok.ru

Урок-лекция по теме «Интеграл. Площадь криволинейной трапеции»

Разделы: Математика, Конкурс «Презентация к уроку»

Презентация к уроку

Загрузить презентацию (1,7 МБ)

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Ключевые слова: интеграл, криволинейная трапеция, площадь фигур, ограниченных лилиями

Оборудование: маркерная доска, компьютер, мультимедиа-проектор

Тип урока: урок-лекция

Цели урока:

  • воспитательные: формировать культуру умственного труда, создавать для каждого ученика ситуацию успеха, формировать положительную мотивацию к учению; развивать умение говорить и слушать других.
  • развивающие: формирование самостоятельности мышления ученика по применению знаний в различных ситуациях, умения анализировать и делать выводы, развитие логики, развитие умения правильно ставить вопросы и находить на них ответы. Совершенствование формирования вычислительных, расчётных навыков, развитие мышления учащихся в ходе выполнения предложенных заданий, развитие алгоритмической культуры.
  • образовательные: сформировать понятия о криволинейной трапеции, об интеграле, овладеть навыками вычисления площадей плоских фигур

Метод обучения: объяснительно-иллюстративный.

Ход урока

В предыдущих классах мы научились вычислять площади фигур, границами которых являются ломаные. В математике существуют методы, позволяющие вычислять площади фигур, ограниченных кривыми. Такие фигуры называются криволинейными трапециями, и вычисляют их площадь с помощью первообразных.

Криволинейная трапеция (слайд 1)

Криволинейной трапецией называется фигура, ограниченная графиком функции , (щ.м.), прямыми x = a и x = b и осью абсцисс

Различные виды криволинейных трапеций (слайд 2)

Рассматриваем различные виды криволинейных трапеций и замечаем: одна из прямых вырождена в точку, роль ограничивающей функции играет прямая

Площадь криволинейной трапеции (слайд 3)

Зафиксируем левый конец промежутка а, а правый х будем менять, т. е., мы двигаем правую стенку криволинейной трапеции и получаем меняющуюся фигуру. Площадь переменной криволинейной трапеции, ограниченной графиком функции , является первообразной F для функции f

И на отрезке [a; b] площадь криволинейной трапеции, образованной функцией f, равна приращению первообразной этой функции:

S к. т.

Задание 1:

Найти площадь криволинейной трапеции, ограниченной графиком функции: f(x) = х2 и прямыми у = 0, х = 1, х = 2.

Решение: (по алгоритму слайд 3)

Начертим график функции и прямые

Найдём одну из первообразных функции f(x) = х2 :

F(x) = ,

Значит

Самопроверка по слайду

Интеграл

Рассмотрим криволинейную трапецию, заданную функцией f на отрезке [a; b]. Разобьём этот отрезок на несколько частей. Площадь всей трапеции разобьётся на сумму площадей более мелких криволинейных трапеций. (слайд 5). Каждую такую трапецию можно приближённо считать прямоугольником. Сумма площадей этих прямоугольников даёт приближённое представление о всей площади криволинейной трапеции. Чем мельче мы разобьём отрезок [a; b], тем точнее вычислим площадь.

Запишем эти рассуждения в виде формул.

Разделим отрезок [a; b] на n частей точками х0 =а, х1,… ,хn = b. Длину k-го обозначим через хk = xk – xk-1. Составим сумму

Геометрически эта сумма представляет собой площадь фигуры, заштрихованной на рисунке (щ.м.)

Суммы вида называются интегральными суммами для функции f. (щ.м.)

Интегральные суммы дают приближённое значение площади. Точное значение получается при помощи предельного перехода. Представим, что мы измельчаем разбиение отрезка [a; b] так, что длины всех маленьких отрезков стремятся к нулю. Тогда площадь составленной фигуры будет приближаться к площади криволинейной трапеции. Можно сказать, что площадь криволинейной трапеции равна пределу интегральных сумм, Sк.т. (щ.м.) или интегралу, т. е.,

Определение:

Интегралом функции f (х) от a до b называется предел интегральных сумм

= (щ.м.)

Формула Ньютона- Лейбница.

Помним, что предел интегральных сумм равен площади криволинейной трапеции, значит можно записать:

Sк.т. =(щ.м.)

С другой стороны, площадь криволинейной трапеции вычисляется по формуле

S к. т.(щ.м.)

Сравнивая эти формулы, получим:

= (щ.м.)

Это равенство называется формулой Ньютона- Лейбница.

Для удобства вычислений формулу записывают в виде:

= = (щ.м.)

Задания: (щ.м.)

1. Вычислить интеграл по формуле Ньютона- Лейбница: (проверяем по слайду 5)

2. Составить интегралы по чертежу (проверяем по слайду 6)

3. Найти площадь фигуры, ограниченной линиями: у = х3, у = 0, х = 1, х = 2. (Слайд 7)

Нахождение площадей плоских фигур (слайд 8)

Как найти площадь фигур, которые не являются криволинейными трапециями?

Пусть даны две функции, графики которых вы видите на слайде. (щ.м.) Необходимо найти площадь закрашенной фигуры. (щ.м.). Фигура, о которой идёт речь, является криволинейной трапецией? А как можно найти её площадь, пользуясь свойством аддитивности площади? Рассмотреть две криволинейные трапеции и из площади одной из них вычесть площадь другой (щ.м.)

Составим алгоритм нахождения площади по анимации на слайде:

  1. Построить графики функций
  2. Спроецировать точки пересечения графиков на ось абсцисс
  3. Заштриховать фигуру, полученную при пересечении графиков
  4. Найти криволинейные трапеции, пересечение или объединение которых есть данная фигура.
  5. Вычислить площадь каждой из них
  6. Найти разность или сумму площадей

Устное задание: Как получить площадь заштрихованной фигуры (рассказать при помощи анимации, слайд 8 и 9)

Домашнее задание: Проработать конспект, №353 (а), № 364 (а).

Список литературы

  1. Алгебра и начала анализа: учебник для 9-11 классов вечерней (сменной) школы/ под ред. Г.Д. Глейзера. - М: Просвещение, 1983.
  2. Башмаков М.И. Алгебра и начала анализа: учебное пособие для 10-11 кл.сред.шк./ Башмаков М.И. - М: Просвещение, 1991.
  3. Башмаков М.И. Математика: учебник для учреждений нач. и сред. проф. образования/ М.И. Башмаков. - М: Академия, 2010.
  4. Колмогоров А.Н. Алгебра и начала анализа: учебник для 10-11 кл. общеобразовательных учреждений/ А.Н.Колмогоров. - М: Просвещение, 2010.
  5. Островский С.Л. Как сделать презентацию к уроку?/ C.Л. Островский. – М.: Первое сентября, 2010.

xn--i1abbnckbmcl9fb.xn--p1ai

Как найти площадь криволинейной трапеции

Криволинейная трапеция представляет собой фигуру, ограниченную графиком неотрицательной и постоянной функции f на интервале [a; b], осью OX и прямыми x=a и x=b. Для вычисления ее площади используйте формулу: S=F(b)–F(a), где F – первообразная для f.

Вам понадобится

  • — карандаш;
  • — ручка;
  • — линейка.

Инструкция

1. Вам нужно определить площадь криволинейной трапеции , ограниченной графиком функции f(x). Обнаружьте первообразную F для заданной функции f. Постройте криволинейную трапецию.

2. Обнаружьте несколько контрольных точек для функции f, вычислите координаты пересечения графика данной функции с осью OX, если они имеются. Изобразите графически другие заданные линии. Заштрихуйте желанную фигуру. Обнаружьте x=a и x=b. Вычислите площадь криволинейной трапеции , применяя формулу S=F(b)–F(a).

3. Пример I. Определите площадь криволинейной трапеции , ограниченной линией y=3x-x?. Обнаружьте первообразную для функции y=3x-x?. Это будет F(x)=3/2x?-1/3x?. Функция y=3x-x? представляет собой параболу. Ее ветви направлены вниз. Обнаружьте точки пересечения данной косой с осью OX.

4. Из уравнения: 3x-x?=0, следует, что x=0 и x=3. Желанные точки – (0; 0) и (0; 3). Следственно, a=0, b=3. Обнаружьте еще несколько контрольных точек и изобразите график данной функции. Вычислите площадь заданной фигуры по формуле: S=F(b)–F(a)=F(3)–F(0)=27/2–27/3–0+0=13,5–9=4,5.

5. Пример II. Определите площадь фигуры, ограниченной линиями: y=x? и y=4x. Обнаружьте первообразные для данных функций. Это будет F(x)=1/3x? для функции y=x? и G(x)=2x? для функции y=4x. С поддержкой системы уравнений обнаружьте координаты точек пересечений параболы y=x? и линейной функции y=4x. Таких точек две: (0;0) и (4;16).

6. Обнаружьте контрольные точки и изобразите графики заданных функций. Легко подметить, что желанная площадь равна разности 2-х фигур: треугольника, образованного прямыми y=4x,y=0, x=0 и x=16 и криволинейной трапеции , ограниченной линиями y=x?, y=0, x=0 и x=16.

7. Вычислите площади данных фигур по формуле: S?=G(b)–G(a)=G(4)–G(0)=32–0=32 и S?=F(b)–F(a)=F(4)–F(0)=64/3–0=64/3. Выходит, площадь желанной фигуры S равна S?–S? =32–64/3=32/3.

jprosto.ru



О сайте

Онлайн-журнал "Автобайки" - первое на постсоветском пространстве издание, призванное осветить проблемы радовых автолюбителей с привлечение экспертов в области автомобилестроения, автоюристов, автомехаников. Вопросы и пожелания о работе сайта принимаются по адресу: Онлайн-журнал "Автобайки"