Млечный путь и его спутники на сайте Игоря Гаршина. Галактика солнечная система

БЕСПЛАТНО ответим на Ваши вопросы
По лишению прав, ДТП, страховом возмещении, выезде на встречную полосу и пр. Ежедневно с 9.00 до 21.00
Москва и МО +7 (499) 938-51-97
С-Петербург и ЛО +7 (812) 467-32-86
Бесплатный звонок по России 8-800-350-23-69 доб.418

Солнечная Система, Галактика, Вселенная

Наша Солнечная Система как небольшой оазис в нашей галактике, которая является крошечным островком во Вселенной. Подразумевая нашу Солнечную Систему, галактику и Вселенную, вам нужно знать несколько основных фактов об относительном размере каждой. Здесь есть несколько фактов о каждой. Надеемся, они помогут вам лучше понять Вселенную вокруг вас. Наша Солнечная Система - самый маленький объект из них в этой статье, так давайте начнем с нее. Есть несколько способов рассмотреть размер Солнечной Системы. Я предпочитаю говорить, что она заканчивается у гелиопаузы (граница гелиосферы). Это конец влияния Солнца на межзвездную среду и происходит в 90 а.е во всех направлениях. Гелиосфера не совершенно круглая, так что 90 а.е. с некоторой погрешностью. Если бы вы пытались оценить размер Земли в перспективе, она была бы размером с горошину по сравнению с Солнечной Системой. Ученые только получают первые надежные данные из гелиосферы. Voyager 1 и Voyager 2 покидают Солнечную Систему и продолжают отправлять сигналы. Никто не знает, когда зонды перестанут транслировать сигналы.

Солнечная Система - это только крошечная часть галактики Млечный Путь. Наша галактика - это спиральная галактика с перемычкой, а Солнечная Система находится в небольшом ответвлении одного рукава, называемом Orion Spur. В нашей галактике 200 миллиардов звезд, но они очень далеки друг от друга. Звезда, самая близкая к Солнцу находится в система Альфа Центавра (Alpha Centauri). Эта звезда находится от нас в 4 световых годах, 37,842,921,890,323.2 км от нас. Всего лишь короткий прыжок отсюда в галактических терминах.

Это подводит нас к Вселенной. Размер Вселенной невозможно вычислить. Всюду вокруг нас, Вселенная расширяется, и расстояния до других галактик увеличиваются. Текущие технологии не могли бы никогда не надеяться измерить много затронутых расстояний. Это следует изменить, так как много видов телескопов и отраслей астрономии становятся более продвинутыми.

Название прочитанной вами статьи "Солнечная Система, Галактика, Вселенная".

Похожие статьи:

universetoday-rus.com

Движение Солнечной системы в галактике Млечный путь

Модель Солнечной системы

Любой человек, даже лежа на диване или сидя возле компьютера, находится в постоянном движении. Это непрерывное перемещение в космическом пространстве имеет самые разные направления и огромные скорости. В первую очередь, происходит перемещение Земли вокруг оси. Кроме того, совершается оборот планеты вокруг Солнца. Но и это еще не все. Куда более внушительные расстояния мы преодолеваем вместе с Солнечной системой.

Расположение Солнечной системы

Солнце является одной из звезд, находящихся в плоскости Млечного пути, или просто Галактики. Оно отдалено от центра на 8 кпк, а расстояние от плоскости Галактики составляет 25 пк. Звездная плотность в нашей области Галактики – примерно 0,12 звезд на 1 пк3. Положение Солнечной системы не является постоянным: она находится в постоянном перемещении относительно ближних звезд, межзвездного газа,  и наконец, вокруг центра Млечного пути. Впервые движение Солнечной системы в Галактике было замечено Уильямом Гершелем.

Перемещение относительно ближних звезд

Скорость передвижения Солнца к границе созвездий Геркулеса и Лиры составляет 4 а.с. в год, или 20 км/с. Вектор скорости направлен к так называемому апексу – точке, к которой также направлено движение других близлежащих звезд. Направления скоростей звезд, в т.ч. Солнца, пересекаются в противоположной апексу точке, называемой антиапексом.

Перемещение относительно видимых звезд

Ближайшие окрестности Солнца

Отдельно измеряется передвижение Солнца по отношению к  ярким звездам, которые можно увидеть без телескопа. Это — показатель стандартного передвижения Солнца. Скорость такого передвижения составляет 3 а.е. в год или 15 км/с.

Перемещение относительно межзвездного пространства

По отношению к межзвездному пространству Солнечная система двигается уже быстрее, скорость составляет 22-25 км/с. При этом, под действием «межзвездного ветра», который «дует» из южной области Галактики, апекс смещается в созвездие Змееносец. Сдвиг оценивается примерно в 50.

Анимация движения

Перемещение вокруг центра Млечного пути

Солнечная система находится в движении относительно центра нашей Галактики. Она перемещается по направлению к созвездию Лебедя. Скорость составляет около 40 а.е. в год, или 200 км/с. Для полного оборота необходимо 220 млн. лет. Точную скорость определить невозможно, ведь апекс (центр Галактики) скрыт от нас за плотными облаками межзвездной пыли. Апекс смещается на 1,5° каждый миллион лет, и совершает полный круг за 250 млн. лет, или за 1 «галактический год.

Путешествие на край Млечного пути

Движение Галактики в космическом пространстве

Наша Галактика также не стоит на месте, а сближается с галактикой Андромеды со скоростью 100-150 км/с. Группа галактик, в которую входит и Млечный путь, движется к большому скоплению Девы со скоростью 400 км/с. Сложно себе представить, а еще сложнее рассчитать, как далеко мы перемещаемся каждую секунду. Расстояния эти — огромны, а погрешности в таких расчетах пока еще достаточно велики.

comments powered by HyperComments

Понравилась запись? Расскажи о ней друзьям!

Просмотров записи: 16183

spacegid.com

Планета-солнечная система-галактика-вселенная-...? Где находится наша вселенная? Как очень масштабно представить строение нашего мира?

Наш космический адрес выглядит следующим образом:

1) Земля. Вместе с другими планетами, обладающими твёрдой поверхностью и находящимися рядом (Меркурий, Венера, Марс), она образует Земную группу. 

2) Солнечная система. Она включает в себя все планеты Земной группы, все остальные планеты (Юпитер, Сатурн, Уран, Нептун), карликовые планеты (Церера, Плутон, Хаумеа, Макемаке, Эрида и, возможно, другие, ещё не открытые), Пояс астероидов между Марсом и Юпитером, транснептуновые объекты, все кометы и метеороиды, космическую пыль и вообще все, что вращается вокруг Солнца. Границей солнечной системы принято считать облако Оорта, которое считается источником комет и состотоит из космического мусора.

3) Местное межзвездное облако - облако, через которое по плоскости галактики движется Солнце вместе со своими звёздами-соседями (Альфа Центавра, Вега, Арктур и др).

4) Галактика Млечный Путь. Солнце находится в относительно тихом месте далеко от центра нашей галактики, в рукаве Ориона. Вместе с миллиардами других звёзд оно вращается вокруг центра нашей галактики.

5) Местная группа галактик, которая состоит из Млечного пути, Галактики Андромеда, Галактики Треугольник и других маленьких и неправильных с точки зрения строения галактик-спутников. Всего в Местной группе насчитывается более 50 галактик, которые вращаются вокруг общего центра масс.

6) Сверхскопление Девы, состоящее, по меньшей мере, из 30 000 галактик и движущееся к аномалии, которая называется Великий Аттрактор.  Интересные факты о генетике Телегония — это 100% бред?Правда ли, что хорошие и плохие качества по большей части передаются от родителей к ребенку генетически? Или это миф?Существует ли национальность с позиции генетики?Задайте вопрос и получите скидку до 70% на генетический тест!

7) Ланиакея - другое сверхскопление галактик, центром тяжести которого является Великий Аттрактор.  В него входит Сверхскопление Девы и 3 других сверхскопления. Включает в себя сотни тысяч других галактик. 

8)  Сверхскопление сверхскоплений (галактическая нить) галактик Рыб-Кита - одна из самых крупных структур вселенной, известной на данный момент. Это невероятно огромная структура, ее длина - примерно 1 миллиард световых лет. 

9) Наблюдаемая Вселенная. Это та часть космоса, которую мы можем видеть, т.е. огромная круглая сфера, центром которой является Земля. Границу Наблюдаемой вселенной образует космологический горизонт, за который мы заглянуть не можем, так как свет от объектов, находящихся за ним, ещё не дошёл до земли. На практике за границей Наблюдаемой вселенной мы видим реликтовое излучение, оставшееся после Большого взрыва. Ее размер - примерно 93 млрд световых лет, наблюдаемый радиус - 13,7 млрд световых лет. 

Никому точно не известно что находится за пределами Наблюдаемой вселенной. Существует множество теорий на этот счёт, например, в основе теории о Мультивселенных лежит предположение, что наша Вселенная - не единственная. Из неё вытекают теории о Пузырьковых вселенных, теория о Матеиматических вселенных, о Бесконечных вселенных и так далее. 

thequestion.ru

Место Солнечной системы в нашей Галактике

Место Солнечной системы в нашей Галактике (Млечный Путь)

Планета Земля, Солнечная система, и все звёзды, видимые невооружённым глазом находятся в Галактике Млечный Путь, которая представляет из себя спиральную галактику с перемычкой, имеющая два ярко выраженных рукава начинающихся на концах перемычки.

 

 

Это было подтверждено в 2005 году космическим телескопом имени Лаймана Спитцера, который показал, что центральная перемычка нашей галактики является большей чем считалось ранее. Спиральные галактики с перемычкой — спиральные галактики с перемычкой («баром») из ярких звёзд, выходящей из центра и пересекающей галактику посередине. Спиральные ветви в таких галактиках начинаются на концах перемычек, тогда как в обычных спиральных галактиках они выходят непосредственно из ядра. Наблюдения показывают, что около двух третьих всех спиральных галактик имеют перемычку. По существующим гипотезам, перемычки являются очагами звёздообразования, поддерживающими рождение звёзд в своих центрах. Предполагается, что посредством орбитального резонанса, они пропускают сквозь себя газ из спиральных ветвей. Этот механизм и обеспечивает приток строительного материала для рождения новых звёзд. Млечный Путь вместе с галактикой Андромеды (M31), Треугольника (М33), и более 40 меньшими галактиками-спутниками образуют Местную Группу Галактик, которая, в свою очередь, входит в Сверхскопление Девы. "Использование инфракрасного изображения с телескопа Spitzer НАСА, позволило ученым обнаружить, что элегантная спиральная структура Млечного Пути имеет только два преобладающих рукава от концов центрального бара звёзд. Ранее считалось, что наша галактика, обладает четырьмя основными рукавами ".

Структура Галактики 

По внешнему виду, галактика напоминает диск (т.к. основная масса звёзд расположена в форме плоского диска) с диаметром около 30 000 парсек (100 000 световых лет, 1 квинтиллион километров) при оценочной средней толщине диска порядка 1000 световых лет, диаметр выпуклости в центре диска составляет 30 000 световых лет. Диск погружен в гало сферической формы, а вокруг него располагается сферическая корона. Центр ядра Галактики находится в созвездии Стрельца. Толщина галактического диска в том месте, где находится Солнечная система с планетой Земля, составляет 700 световых лет. Расстояние от Солнца до центра Галактики 8,5 кило парсек (2,62•1017 км, или 27 700 световых лет). Солнечная система находится на внутреннем крае рукава, носящего название рукав Ориона. В центре Галактики, по всей видимости, располагается сверх массивная чёрная дыра (Стрелец A*) (около 4,3 миллиона масс Солнца) вокруг которой, предположительно, вращается чёрная дыра средней массы от 1000 до 10 000 масс Солнца и периодом обращения около 100 лет и несколько тысяч сравнительно небольших. Галактика содержит, по самой низкой оценке, порядка 200 миллиардов звёзд (современная оценка колеблется в диапазоне предположений от 200 до 400 миллиардов). По состоянию на январь 2009, масса Галактики оценивается в 3•1012 масс Солнца, или 6•1042 кг. Основная масса Галактики содержится не в звездах и межзвёздном газе, а в не светящемся гало из тёмной материи.

 

 

По сравнению с гало диск Галактики вращается заметно быстрее. Скорость его вращения не одинакова на различных расстояниях от центра. Она стремительно возрастает от нуля в центре до 200—240 км / с на расстоянии 2 тыс. световых лет от него, затем несколько уменьшается, снова возрастает примерно до того же значения и далее остается почти постоянной. Изучение особенностей вращения диска Галактики позволило оценить его массу, оказалось, что она в 150 миллиардов раз больше массы Солнца. Возраст Галактики Млечный Путь равен 13 200 млн лет, почти так же стара, как Вселенная. Млечный Путь является частью Местной группы галактик.

Местоположение Солнечной системы

Солнечная система находится на внутреннем крае рукава, носящего название рукав Ориона, в окраинной части Местного Сверх скопления (Local Supercluster), который иногда называют также Сверх скоплением Девы. Толщина галактического диска( в том месте где находится  Солнечная система с планетой Земля), составляет 700 световых лет. Расстояние от Солнца до центра Галактики 8,5 кило парсек (2,62•1017 км, или 27 700 световых лет). Солнце расположено ближе к краю диска, чем к его центру.

 

 

Вместе с другими звёздами Солнце вращается вокруг центра Галактики со скоростью 220—240 км / с, совершая один оборот примерно за 225-250 миллионов лет( что составляет один галактический год) . Таким образом, за все время существования Земля облетела вокруг центра Галактики не более 30 раз. Галактический год Галактики составляет 50 миллионов лет, Период обращения перемычки 15-18 миллионов лет. В окрестностях Солнца удается отследить участки двух спиральных рукавов, которые удалены от нас примерно на 3 тыс. световых лет. По созвездиям, где наблюдаются эти участки, им дали название рукав Стрельца и рукав Персея. Солнце расположено почти посередине между этими спиральными ветвями. Но сравнительно близко от нас (по галактическим меркам), в созвездии Ориона, проходит еще один, не очень четко выраженный рукав — рукав Ориона, который считается ответвлением одного из основных спиральных рукавов Галактики. Скорость вращения Солнца вокруг центра Галактики почти совпадает со скоростью волны уплотнения, образующей спиральный рукав. Такая ситуация является нетипичной для Галактики в целом: спиральные рукава вращаются с постоянной угловой скоростью, как спицы в колесах, а движение звезд происходит с другой закономерностью, поэтому почти все звездное население диска то попадает внутрь спиральных рукавов, то выпадает из них. Единственное место, где скорости звезд и спиральных рукавов совпадают — это так называемый коротационный круг, и именно на нем расположено Солнце.  Для Земли это обстоятельство чрезвычайно важно, поскольку в спиральных рукавах происходят бурные процессы, образующие мощное излучение, губительное для всего живого. И никакая атмосфера не смогла бы от него защитить. Но наша планета существует в сравнительно спокойном месте Галактики и в течение сотен миллионов (или даже миллиардов) лет не подвергалась воздействию этих космических катаклизмов. Возможно именно поэтому на Земле смогла родиться и сохраниться жизнь, возраст которой насчитывается в 4,6 миллиарда лет. Схема расположения Земли во Вселенной в серии из восьми карт , которые показывают, слева направо, начиная с Земли, двигаясь в Солнечной системе, на соседние звездные системы, на Млечный Путь, на местные Галактические группы, на местные сверх скопления Девы, на нашем местном сверх скопления, и заканчивается в наблюдаемой Вселенной.

 

     

Солнечная система: 0,001 световых лет

Соседи в межзвездном пространстве

Млечный Путь: 100000 световых лет

Местные Галактические группы

Местное сверх скопление  Девы

Местные сверх скопления галактик

 Наблюдаемая Вселенная

Предоставлено Wikipedia и Azcolvin429

 

say746.ru

Всё о Солнечной системе

Содержание страницы:

На краю галактики Млечный Путь мерцает звёздочка по имени Солнце. По звёздной классификации это жёлтый карлик. Хотя нам, живущим её теплом и светом, эта звезда представляется огромной, всемогущей.

Около 5 миллиардов лет назад из пылевого протозвёздного вещества образовалось Солнце, а вслед за ним планеты. В результате получилась планетная система, размером около 150 000 астрономических единиц (а. е.).Астрономическая единицаЭто расстояние от Земли до Солнца. Примерно 149 млн. км. Свет проходит это расстояние примерно за 500 секунд (8 минут 20 секунд)

Все планеты расположены с определённой последовательностью, расстояния между их орбитами возрастают по мере удаления планет от Солнца.

Состав Солнечной системы

Солнце

Солнце, сосредоточило в себе 99,9% всей массы системы. Звезда состоит в основном из водорода и гелия. По сути, это гигантский термоядерный реактор. Температура поверхности около 6000 °С. Но зато внутренний нагрев светила зашкаливает за 10 000 000 °С.

Со скоростью 250 км/сек наша звезда мчится в космосе вокруг центра галактики, до которого «всего» 26 000 световых лет. И на один оборот уходит около 180 миллионов лет.

Планеты и их спутники

Земная группа.
Меркурий

Ближайшая к Солнцу, но и самая малая из планет. Она очень медленно обращается вокруг себя, за полный оборот вокруг светила делая лишь полтора оборота вокруг своей оси. Планета не имеет ни атмосферы, ни спутников, днём раскаляясь до +430 °С, а ночью охлаждаясь до – 180 °С.

Венера

Самая романтичная и ближайшая к Земле планета тоже для жилья не пригодна. Она плотно укутана толстым одеялом облаков из углекислого газа, и при температуре до + 475 °С имеет давление у поверхности, испещрённой кратерами, свыше 90 атмосфер. Венера очень близка Земле размерами и массой.

Марс

Похож на нашу планету по своей структуре. Радиус его в два раза меньше земного, а масса меньше на порядок. Здесь можно было бы прожить, но отсутствие воды и атмосферы мешают это сделать. Марсианский год в два раза длиннее земного, зато сутки практически той же продолжительности. Марс богаче первых двух планет, имея два спутника: Фобос и Деймос, переводимые с греческого как «страх» и «ужас». Это небольшие каменные глыбы, очень похожие на астероиды.

Планеты-гиганты.
Юпитер

Самая крупная газовая планета-гигант. Будь его масса в несколько десятков раз больше, он реально смог бы стать звездой. Сутки на планете длятся около 10 часов, а год протекает за 12 земных. Юпитер, как Сатурн и Уран, имеет систему колец. Их у него четыре, но они не очень ярко выражены, из далека можно и не заметить. Зато спутников у планеты больше 60.

Сатурн

Это самая окольцованная планета, которую имеет Солнечная система. Ещё у Сатурна есть особенность, которой не имеют другие планеты. Это его плотность. Она меньше единицы, и получается, что если найти где-то огромный океан и бросить в него эту планету, то она не утонет. На данное время открыто более 60 спутников этого гиганта. Основные из них – Титан, Энцелад, Диона, Тефия. Сатурн похож на Юпитер по строению атмосферы.

Уран

Особенность этой планеты, предстающей наблюдателю в тонах сине-зелёных, в его вращении. Ось вращения планеты практически параллельна плоскости эклиптики. Говоря обыденным языком, Уран лежит на боку. Но это не помешало ему обзавестись 13 кольцами и 27 спутниками, самые известные из которых Оберон, Титания, Ариэль, Умбриэль.

Нептун

Так же, как и Уран, Нептун состоит из газа, включающего в себя воду, аммиак и метан. Последний, концентрируясь в атмосфере, придаёт планете голубой цвет. Планета имеет 5 колец и 13 спутников. Главные: Тритон, Протей, Ларисса, Нереида.

Плутон

Самая большая среди карликовых планет. Он состоит из каменистого ядра, покрытого толщей льда. Только в 2015 году до Плутона долетел космический аппарат и сделал детальные снимки. Главный его спутник — Харон.

Малые объекты

Пояс Койпера. Часть нашей планетной системы от 30 до 50 а. е. Здесь сосредоточена масса малых тел, льдов. Они состоят из метана, аммиака и воды, но есть объекты, включающие в себя горные породы и металлы.

Астероиды. Орбиты этих каменных или металлических глыб в основном находятся у плоскости эклиптики. Пути некоторых астероидов пересекаются с земной орбитой. И, хотя вероятность нежеланной встречи ничтожна мала, но… 65 миллионов лет назад она, вероятно, всё же состоялась.

По легенде, некую планету Фаэтон, мирно вращавшуюся вокруг светила, разорвал в клочья своей гравитацией Юпитер. И получился прекрасный пояс астероидов. В действительности подтверждения этому наука не даёт.

Кометы. Если перевести это слово с греческого, получится «длинноволосый». И это так. Когда ледяная странница приближается к Солнцу, она распускает длинный хвост из испаряющихся газов на сотни миллионов километров. Комета имеет и голову, состоящую из ядра и комы. Ядро – ледяная глыба из застывших газов с добавками силикатов и частиц металлов. Возможно, что присутствует и некая органика. Кома – это газопылевое окружение кометы.

Облако Оорта. Ян Оорт, ещё в 1950 году, предположил существование облака, заполненного объектами из обледеневших аммиака, метана и воды. Пока не доказано, но возможно, что облако начинается от 2 — 5 тысяч а.е., простираясь до 50 тысяч а. е. Большинство комет происходят именно из облака Оорта.

Место Земли в Солнечной системе

Более удачного положения, чем то, что занимает Земля, придумать невозможно. Участок нашей галактики довольно спокойный. Солнце обеспечивает постоянное, равномерное свечение. Оно выделяет ровно столько тепла, излучения и энергии, сколько требуется для зарождения и развития жизни. Саму же Землю словно продумали заранее. Идеальный состав атмосферы, и геологическое строение. Нужный фон радиации и температурный режим. Наличие воды с её удивительными свойствами. Присутствие Луны, именно такой массы и на таком расстоянии, как это требуется. Есть ещё очень много совпадений, имеющих решающее значение для благоприятной жизни на планете. И нарушение практически любого из них сделало бы маловероятным возникновение и существование жизни.

Стабильность системы

Обращение планет вокруг Солнца происходит в одном (прямом) направлении. Орбиты планет практически круговые, а их плоскости близки к плоскости Лапласа. Это основная плоскость Солнечной системы. Законам механики подчиняется наша жизнь, и Солнечная система не исключение. Планеты связаны друг с другом законом всемирного тяготения. Исходя из отсутствия трения в межзвёздном пространстве, можно уверенно предположить, что движение планет относительно друг друга не изменится. Во всяком случае, в ближайшие миллионолетия. Многие учёные пытались рассчитать будущее планет нашей системы. Но у всех – и даже у Эйнштейна – получалось одно: планеты солнечной системы будут стабильны всегда.

Несколько интересных фактов

  • Температура солнечной короны. Температура возле Солнца больше, нежели на его поверхности. Эту загадку разгадать пока не удаётся. Возможно, проявляют действие магнитные силы атмосферы звезды.
  • Атмосфера Титана. Это единственный из всех спутников планет, имеющий атмосферу. И состоит она в основном из азота. Почти как земная.
  • Остается загадкой, почему активность Солнца изменяется с определенной периодичностью и временем.

Давно и успешно исследуется наша планетная система. Луна, Венера, Марс, Меркурий, Юпитер и Сатурн находятся под постоянным наблюдением. На нашем спутнике оставлены следы людей и вездеходов. По Марсу разъезжают автономные марсоходы, передавая ценную информацию. Легендарный «Вояджер» уже пролетел всю Солнечную систему, перешагнув её границы. Даже на комету удалось посадить рабочий модуль. И уже готовится пилотируемое путешествие на Марс.

Нам невероятно повезло, что мы поселились в таком месте Вселенной. Хотя, есть ли иные миры, никто ещё не доказал. Но и нашу систему прекрасных планет мы ещё так мало знаем. Вот и сейчас мы спокойны, деловиты. А, возможно, уже выпущен камушек из облака Оорта и летит точно к Юпитеру. Или, всё же, на этот раз к нам?

comments powered by HyperComments

light-science.ru

Галактика. Звезды. Солнечная система | Kursak.NET

Галактики

Вселенная образована огромным количеством галактик. Галактика (от греч.galaktikos – молочный, млечный) – звездная система, образованная звездами различных типов, звездными скоплениями. Помимо звезд в состав галактик могут входить газовые, пылевые туманности и др. Разным галактикам соответствуют различные, но вполне определенные элементы. Состав галактик зависит от ее возраста и условий развития. Полагают, что среднее расстояние между галактиками 2млн.свет.лет, а типичная скорость движения галактик около 1000км/с. Согласно расчетам, для прохождения расстояния до ближайшей соседки требуется около 1млрд. лет и возможность столкновения с себе подобной не исключена.

Галактик миллиарды и каждой из них насчитываются миллиарды звезд. Предположения о множественности галактик высказывались еще в середине VIIIв., но доказательства их существования появились только в первой четверти XXв. Галактики образуют Метагалактику (Вселенную), размеры которой оцениваются в 15-20млрд.свет.лет, а возраст – в 13-15млрд.лет. Некоторые галактики излучают радиоволны с потрясающей мощностью. Предполагают, что в них существует магнитное поле, тормозящее движение находящихся там элементарных частиц, а это вызывает радиоизлучение.

В 60-ых годах ХХв. были открыты квазары – квазизвездные радиоисточники – самые мощные источники радиоизлучения во Вселенной со светимостью в сотни раз большей светимости галактик и размерами в десятки раз меньшими их. Природа квазаров пока неясна. Возможно, что квазары представляют собой ядра новых галактик, а значит, процесс образования галактик продолжается и поныне. Галактики имеют свой центр (ядро) и различную форму, в соответствии с которой их классифицируют как спиральные, эллиптические, шаровые, неправильные. Вследствие удаленности галактик свет от входящих в них миллиардов звезд сливается, создавая впечатление светящегося туманного вещества, поэтому галактики получили название туманностей.

Наблюдаемая в созвездии Андромеды туманность – большая галактика – Туманность Андромеды. Это спиральная галактика, находящаяся от на нас расстоянии около 2млн.свет.лет. Туманность Андромеды – ближайшая к нам галактика. Она была открыта в 1917г. как первый внегалактический объект. В 1923г. путем спектрального анализа в этом объекте были обнаружены звезды и таким образом доказана его принадлежность к другой галактике. Туманность Андромеды имеет спутники эллиптической или шаровидной формы – более мелкие галактики. Еще одна спиральная галактика находится в созвездии Треугольника. По размерам она меньше Туманности Андромеды и не имеет спутников.

Галактики образуют группы галактик. Таких групп во Вселенной множество, они могут быть малыми и большими. Так, огромное облако, наблюдаемое в созвездии Девы, состоит из сотен галактик. В состав одной из групп – Местного скопления входят спиральные галактики вместе с их спутниками: Туманность Андромеды, галактика в созвездии Треугольника и Наша Галактика. Наша Галактика – это звездная система, в которую входят все звезды, видимые в созвездиях, и все звезды Млечного Пути, а также газовые и пылевые туманности. Пылевые туманности – облака в межзвездном пространстве, образованные очень мелкой космической пылью.

Космическая пыль препятствует прохождению света от звезд, поглощая его. Причем в большей степени поглощается коротковолновая, сине-зеленая часть спектра, поэтому свет звезд становится более желтоватым и даже красноватым. Космическая пыль является существенной помехой для исследований, поскольку она искажает свет звезд, ослабляет их блеск, а более далекие из них делает совсем невидимыми. Полагают, что в малой доле космическая пыль образуется от столкновения и разрушения мелких твердых тел, но в своей основной массе она возникает, вероятно, вследствие сгущения межзвездного газа.

Межзвездный газ был обнаружен по линиям поглощения в спектрах звезд. В его состав входит преимущественно водород, в меньшей степени – гелий; содержание азота и других легких газов небольшое. Межзвездный газ в крайне низких концентрациях имеется в большей части межзвездного пространства, а в отдельных местах образует скопления – газовые туманности. Считают, что газ в туманностях частично является остатком тех газов, из которых когда-то возникли звезды, а также возникает и теперь: он выбрасывается звездами. В местах скопления газа может содержаться значительное количество космической пыли – это газово-пылевые туманности. Газовые и газово-пылевые туманности изучают с помощью астрономических приборов благодаря их свечению. Свечение газов в крупных газовых туманностях можно наблюдать потому, что толщина их огромна, а общая масса составляет от нескольких десятков до сотен тысяч масс Солнца. Газовые туманности бывают разных размеров и различной, чаще неправильной формы. Туманности правильной, округлой формы – небольшие. Их называют планетарными.

В отличие от крупных газовых туманностей, масса планетарных туманностей очень мала: она составляет десятые и даже сотые доли массы Солнца. В центре каждой такой туманности имеется ядро – небольшая звездочка. Полагают, что это самые горячие из звезд, поскольку их излучение заставляет светиться планетарную туманность. Планетарные туманности образуются из газов, выделяемых звездой. Они недолговечны, поскольку медленно, со скоростью нескольких километров в секунду, расширяются в пространстве и со временем рассеиваются. Согласно расчетам, планетарные газовые туманности могут быть видимыми около 10 тысяч лет.

Две туманности, наблюдаемые в южном полушарии неба – галактики неправильной формы – Большое и Малое Магеллановы Облака – являются спутниками Нашей Галактики. Расстояние до них оценивается в 120тыс.свет.лет, а размеры этих галактик составляют 26 и 17тыс.свет.лет. По данным исследований, они состоят из звезд всевозможных типов, а также из газовых и пылевых туманностей. В них есть рассеянные и шаровые звездные скопления. Наша Галактика по форме очень похожа на Туманность Андромеды, обе имеют спутники. По размерам Наша Галактика несколько меньше.

Наша Галактика называется Млечный Путь. Млечный Путь опоясывает все небо как гигантская светящаяся лента. Это довольно большая галактика, имеющая диаметр около 100тыс.свет.лет и включающая в себя более 100млрд. звезд, в т.ч. Солнце. Полная масса Галактики равна 150 млрд. солнечных масс. Более яркие, близкие звезды расположены тем гуще, чем они ближе к средней линии Млечного Пути. Среднюю линию Млечного Пути называют галактическим экватором. Плоскость галактического экватора – это плоскость симметрии нашей звездной системы.

Звездные скопления, звезды, газовые туманности, облака космической пыли сосредоточены в основном около этой плоскости. Только шаровые звездные скопления и звезды некоторых типов не подчиняются этому закону: они заполняют сферический объем, концентрируясь со всех сторон к центру Галактики. При этом 95% массы Галактики расположено около галактической плоскости. На долю сферической составляющей приходится около 5% вещества Галактики. Таким образом, большая часть звезд Нашей Галактики сосредоточена в гигантском «диске» толщиной около 1500свет.лет. Наша Солнечная система находится очень близко к галактической плоскости, в которой звезды расположены наиболее тесно.

Из-за облаков пыли, ослабляющих свет далеких звезд, очень трудно выяснить подробности строения Галактики. Установлено, что Наша Галактика имеет спиральное строение. Из ее ядра выходят две (возможно, более) спиральные ветви. Они состоят из звезд, газовых и пылевых туманностей и закручиваются вокруг ядра. Расположение спиральных ветвей точно пока не выяснено, но Солнце находится между ними, а самые горячие и яркие звезды группируются в звездных облаках, непосредственно образующих спиральные ветви.

Много неясного связано с ядром Галактики. Его линейные размеры оценивают приблизительно в 4000свет.лет. Ядро является источником очень мощного излучения. Однако на звездном небе ядро Галактики не видно, поскольку заслонено облаками космической пыли, через которые его свет не доходит до нас. Ядро можно наблюдать, только применяя особые способы фотографирования. Вокруг ядра Галактики все звезды вращаются с разной скоростью. Скорость движения Солнечной системы вокруг центра Галактики около 250км/с. На один оборот ей требуется примерно 200млн. лет. Расстояние от Солнца до центра Галактики около 30тыс.свет.лет, а до ее края несколько меньше. Чем ближе к краю Галактики, тем разреженнее звезды. Свет всех далеких и слабых звезд сливается для нас в сплошное кольцо Млечного Пути. Предполагают, что вокруг многих звезд должны быть планетные системы. Даже если только на тысячу звезд приходится одна обитаемая планета, то и тогда во всей Галактике таких планет должно быть 100млн.

Звезды

Звезды – самосветящиеся небесные тела, состоящие из раскаленных газов. Солнце – ближайшая к нам звезда. Расстояние от Земли до Солнца – 8,3свет.мин. Состав звезд, а также их температуру, исследуют посредством спектрального анализа. Спектральный анализ – метод в астрофизике, позволяющий изучать химический состав светил с помощью исследования их спектров.

Изучение спектров звезд позволило сделать вывод о том, что они состоят из атомов тех же химических элементов, что и все тела на Земле. В составе звезд преобладают водород (около 50% по массе) и гелий (около 40%). Атомы остальных химических элементов встречаются почти в таком же соотношении, как и на Земле. Вещество звезд представляет собой раскаленный газ. С учетом того, что масса звезд гораздо больше массы планет, понятно, что подавляющее большинство вещества Вселенной находится в состоянии раскаленного газа. При этом очень малая его доля находится в твердом и жидком состоянии, а живое вещество, даже если у многих звезд имеются обитаемые планеты, составляет ничтожную часть.

Внутреннее строение звезд рассчитывается, исходя из следующего: элементарные частицы – электроны, протоны, фотоны и др. – одни и те же и в звездах, и на Земле. Поэтому при изучении внутреннего строения звезд применяют общие законы физики. Согласно современным представлениям, звезды светят вследствие того, что в их недрах происходят ядерные реакции: водород превращается в гелий, в результате чего и освобождается атомная энергия. Поскольку содержание атомов водорода в звездах велико, то за счет таких преобразований большинство звезд может излучать энергию. Вследствие происходящих атомных превращений постепенно меняется их химический состав, что может служить указанием на направления звездной эволюции.

Впечатление о бесчисленности звезд, видимых невооруженным глазом, ошибочно. В безлунную ночь, в ясную погоду на небе видно всего лишь 3000 звезд. Мерцание звезд усиливает впечатление об их бесчисленности – одни и те же звездочки кажутся то ярче, то слабее из-за того, что между ними и нами протекают струйки воздуха различной плотности. Изучение звезд было вызвано потребностями материальной жизни общества – необходимостью ориентироваться при путешествиях, созданием календаря, определением точного времени. Еще в глубокой древности звездное небо было разделено на созвездия.

Созвездия – участки, на которые разделяют звездное небо по фигурам, образуемым яркими звездами. Всего насчитывается 88 созвездий, ими пользуются для ориентировки на звездном небе. Принадлежность звезды к одному созвездию – это их видимая, или перспективная, близость. На самом деле звезды, причисляемые к одному созвездию, находятся на самых различных расстояниях от нас. Наблюдаемые на небе звезды характеризуются различным блеском, интенсивность которого определяется звездной величиной.

Звездная величина – принятая в астрономии единица измерения видимого блеска звезд и других небесных тел. Чем слабее светится звезда, тем больше число, обозначающее ее звездную величину.

Самые яркие назвали звездами 1-ой величины. Самые слабые из видимых невооруженным глазом относят к звездам 6-ой звездной величины. Звезды 1-ой величины ярче звезд 6-ой величины в 100 раз. В бинокль видны звезды 8-9-ой величины, а в телескоп еще более слабые. Звезд 1-ой величины на всем небе около 20. Звезд 2-ой величины, таких, как главные звезды созвездия Большой Медведицы, – около 70. Всего видимых звезд, т.е. 6-ой величины и ярче, около 6000. Учитывая, что над горизонтом видна только половина всего неба, одновременно наблюдать можно максимально около 3000 звезд.

Звездная величина к действительной интенсивности испускаемого звездой излучения не имеет прямого отношения. Истинная сила света звезды характеризуется светимостью. Светимость определяется как отношение сила света звезды к силе света Солнца.

Зная расстояние до звезды и ее видимый блеск с Земли, вычисляют, каким был бы блеск звезды, если бы она находилась на расстоянии Солнца. Отношение такого предполагаемого блеска звезды к блеску Солнца характеризует её светимость. Если светимость звезды равна 5, то это значит, что она в 5 раз ярче Солнца. Если светимость обозначается 0,2, то такая звезда в 5 раз слабее Солнца. Наибольшей известной светимостью, в 400 раз большей светимости Солнца, обладает звезда S из созвездия Золотой Рыбы.

Число звезд большой светимости среди звезд, видимых невооруженным глазом, непропорционально велико, так как такие звезды видны на больших расстояниях. На самом деле звезды большой светимости в окрестностях Солнца встречаются гораздо реже, а звезды с меньшей светимостью – чаще. Из 20 ближайших к нам звезд только 3 видны невооруженным глазом, а из 20 звезд, кажущихся нам яркими, только 3 входят в число ближайших.

Основной метод определения расстояний до звезд состоит в измерении их видимых смещений, вызываемых обращением Земли вокруг Солнца. По смещению, величина которого обратно пропорциональна расстоянию, вычисляют и само расстояние. Годичные смещения звезд составляют обычно доли микронов, реже – несколько микронов. Расстояние до звезд может определяться и другими способами: например, исходя из светимости звезды и ее блеска.

Наблюдаемые с Земли звезды различного цвета: голубоватые, белые, желтые, оранжевые и красные. Цвет звезд соответствует температуре их поверхности. Голубоватые звезды самые горячие – температура на их поверхности составляет десятки тысяч градусов. Температура белых звезд – порядка 103К, желтых (как наше Солнце) – около 6000К, а красных – 3000К и ниже. По направлению к центру звезды температура повышается и в центре достигает миллионов и десятков миллионов градусов. В недрах звезд происходит превращение водорода в гелий, эти реакции поддерживают мощное тепловое и световое излучение звезд в течение огромных промежутков времени. Было установлено, что не только количество, но и качество излучения (цвет) определяется температурой. Раскаленное тело излучает свет всех цветов (всех длин волн), но в зависимости от температуры накала максимум излучения приходится на различные области спектра, вследствие чего суммарное излучение имеет то красный, то белый, то голубоватый цвет. Изучение звездных температур производят на основе спектрального анализа или посредством измерения количества тепла, приходящего от него на Землю.

Звездный мир чрезвычайно многообразен. Различают несколько видов звезд: это гиганты и карлики, одиночные, двойные и кратные, переменные и новые. Звезды-гиганты – огромные звезды, в миллионы раз по объему больше Солнца. Такие звезды встречаются редко. Самые большие звезды называются сверхгигантами. Так, сверхгигант Антарес в созвездии Скорпиона по диаметру в 450 раз больше Солнца. Звезды-карлики, напротив, имеют относительно небольшие размеры. Наше Солнце считается карликом, а оно больше Земли в диаметре в 109 раз. В зависимости от цвета звезды различают красные карлики, белые карлики. Красные карлики меньше Солнца по диаметру примерно в 10 раз. Считают, что именно они составляют большую часть звезд. Белые карлики имеют еще более мелкие размеры и встречаются редко.

Звезды-гиганты и звезды-карлики сильно различаются по плотности. Средняя плотность Солнца в 1,4 раза больше плотности воды, а средняя плотность белых карликов в 30 раз больше плотности воды. При этом у гигантов и сверхгигантов плотность газов, из которых они состоят, очень мала – в сотни тысяч раз меньше плотности воды.

Двойные звезды – системы, состоящие из двух звезд, каждая из которых обращается вокруг их общего центра тяжести. Обычно более яркую звезду в паре называют главной, а другую – ее спутником.

Ярчайшая звезда неба Сириус – двойная. Спутник этой звезды – белый карлик – обращается вокруг главной звезды за 50 лет и отстоит от нее в 20 раз дальше, чем Земля от Солнца.

Среди двойных звезд различают так называемые спектрально-двойные звезды – тесные пары звезд, которые нельзя увидеть раздельно при помощи современных оптических средств. Двойственность их обнаруживается по периодическим смещениям линий в спектрах.

Системы, состоящие из трех, четырех или более звезд, называются кратными звездами.

Ближайшая к нам звезда α-Центавра, видимая в Южном полушарии Земли, в действительности состоит из двух главных звезд, очень сходных с нашим Солнцем. Период их обращения почти 80 лет, а среднее взаимное расстояние в 23 раза больше расстояния от Земли до Солнца. У этих двух звезд есть спутник – красный карлик. Таким образом, α-Центавра – пример тройной звезды. Кратные звезды встречаются значительно реже, чем двойные.

Переменные звезды – звезды, блеск которых со временем меняется. Параллельно с изменением блеска меняется их цвет и температура, а иногда и размеры.

Причиной переменности может являться периодическое затмение одной звезды другой. Гораздо чаще происходят действительные изменения размеров и температур звезд: они сжимаются и расширятся – пульсируют. Промежутки между моментами наибольшего сжатия или расширения у одних переменных звезд составляют годы, у других – только часы.

В зависимости от характера изменения блеска и причин, его вызывающих, переменные звезды подразделяются на различные типы.

Затменные переменные звезды – очень тесные двойные звезды, плоскость орбиты которых проходит через луч зрения. При обращении вокруг общего центра тяжести обе звезды попеременно закрывают друг друга, так что общий блеск системы во время затмений ослабевает.

Другой разновидностью переменных звезд являются цефеиды. Их так называют по типичной представительнице этого класса звезд звезде δ в созвездии Цефея. Все цефеиды являются звездами-гигантами и сверхгигантами. Изменение блеска у них происходит строго периодически. Открытие зависимости между периодом изменения блеска у цефеид и их светимостью дало возможность определять расстояние до очень далеких звездных систем, если в них имеются цефеиды.

Цефеиды – пульсирующие звезды. Пульсирует, расширяясь и сжимаясь, все тело звезды. При сжатии ее происходит нагревание, а при расширении – охлаждение. Изменение размера и температуры поверхности звезды и вызывает колебания ее излучения.

Новые звезды – звезды, излучение которых внезапно увеличивается в тысячи раз, а затем медленно уменьшается. Это некоторые красные карлики.

Изменения, происходящие в звезде за время вспышки столь велики, что за несколько суток небольшая звезда-карлик превращается в гиганта. Блеск её увеличивается более чем в 10тыс. раз. От нее отделяется газовая оболочка, которая, продолжая расширяться, рассеивается в пространстве. В наибольшем своем блеске раздувшаяся оболочка больше нашего Солнца по диаметру в сотни раз. Новая звезда в большом блеске остается недолго, обычно около суток, затем ее блеск начинает ослабевать и звезда вновь сжимается до прежних размеров.

Исследованиями установлено, что в Нашей Галактике ежегодно происходит около 100 вспышек новых звезд, но мы замечаем лишь ближайшие из них. Вспышка не означает возникновения или уничтожения звезды. Через некоторый промежуток времени эта же звезда может вспыхнуть вновь. Вспышки являются следствием нарушения устойчивости звезды, вызванного внутренними причинами. Сущность этих причин пока не выяснена. Иногда в Нашей и других галактиках наблюдаются вспышки сверхновых звезд. При таких вспышках звезды излучают свет в миллионы и в сотни миллионов раз интенсивнее, чем Солнце. Сверхновые звезды явление крайне редкое. Последней сверхновой, наблюдавшейся в Нашей Галактике, была звезда, которую наблюдал Кеплер в 1604г. Таким образом, даже в таких гигантских звездных системах как наша вспышка сверхновой звезды бывает один раз в несколько столетий.

Согласно расчетам, допускают, что в ряде случаев в результате вспышки сверхновой остаток звездной массы катастрофически сжимается и звезда превращается в быстро вращающуюся нейтронную. Нейтронные звезды – предполагаемые звезды, состоящие из нейтронов. Они чрезвычайно плотные и очень малы – имеют в поперечнике около 10 км. Различают невидимые космические объекты, которые посылают огромное невидимое пульсирующее радиоизлучение – пульсары. Пульсары - точечные источники радиоизлучения, испускающие импульсы с очень коротким периодом. Возможно, пульсары представляют собой нейтронные звезды.

Звезды имеют огромные различия по размеру и плотности. При этом массы звезд не отличаются так значительно и колеблются в пределах от 0,1 до нескольких десятков солнечных масс. Однако непосредственно массы звезд могут быть определены лишь у двойных звезд. Изучение масс двойных звезд показало, что между массами и светимостью звезд существует некоторая зависимость. В среднем, светимость большинства звезд пропорциональна ее массе в степени 3,3. Это соотношение позволяет определять массы звезд косвенно, по их светимости. Предполагают, что многие звезды окружены планетами. Вследствие дальности расстояния пока еще не удается непосредственно увидеть планеты около других звезд даже в самые мощные телескопы. Для их обнаружения необходимы тонкие методы исследования, тщательные наблюдения в течение десятков лет и сложные расчеты.

Около некоторых ближайших звезд уже обнаружены невидимые спутники малой массы. Их вычислили по еле заметным движениям звезд под действием притяжения их невидимым спутником. Пока еще с достоверностью не установлено, являются ли эти спутники планетами или же крайне слабо светящимися маленькими звездами. Однако есть все основания предполагать, что наша планетная система не является исключительным явлением в мировом пространстве. На планетах, окружающих другие звезды, также вероятно существование жизни и Земля не представляет в этом отношении исключения.

В результате астрономических исследований для множества звезд точно определены положение на небе, их звездная величина, а также другие характеристики. По имеющимся сведениям составлены звездные каталоги, в которые занесены около миллиона звезд. Таким образом, около миллиона звезд находятся на строгом учете, а не просто посчитаны. По установленным положениям звезд на небе составляются карты звездного неба. Известно, что звезд ярче 21-ой звездной величины около 2 млрд. Одна из них – Солнце.

Солнце по всем признакам является рядовой звездой. Полагают, что возраст Солнца – 4-5млрд. лет. Ближайшие к Солнцу звезды – α-Центавра и Сириус. Скорость движения Солнца вокруг оси Галактики – 250 км/с. Расстояние от Земли до Солнца 8,3свет.мин. или 149,6млн.км. Диаметр Солнца оценивается в 1,4млн.км. Масса Солнца в 333 тыс. раз больше массы Земли, а его объем больше земного в 1млн. 304 тыс. раз. Средняя плотность Солнца выше плотности воды в 1,4 раза. Но плотность вещества распределена неравномерно: внутри Солнца она чрезвычайно высокая, а снаружи – крайне низкая, в сотни раз меньшая, чем воздух.

На основании проведенных исследований сделаны выводы о строении Солнца. Полагают, что Солнце состоит из нескольких слоев – внутренних и внешних. К внутренним слоям относятся ядро, область лучистого переноса энергии и конвективная зона. Внешние слои образует атмосфера.

Ядро находится в центре Солнца. Его радиус составляет 1/3 солнечного радиуса. В ядре сосредоточена большая часть вещества Солнца. Температура вещества в центре Солнца превышает 10 млн.К. В условиях сверхдавления и сверхвысокой температуры вещество ядра ионизировано, т.е. представляет собой плазму. Частицы плазмы находятся в постоянном движении, скорость которого огромна. Поэтому между частицами непрерывно происходят ядерные реакции, в результате которых из атомов водорода образуются атомы гелия и выделяется большое количество энергии. Например:

1Н2+1Н1=2Не3

22Не3=2Не4+21Н1+энергия

Водородные ядерные реакции – источник солнечной энергии. За время своего существования Солнце не израсходовало еще и половины запасов водородного ядерного топлива. В течение почти всего этого времени излучение Солнца почти такое же, как и теперь. Так оно и будет светить миллиарды лет, пока в недрах Солнца весь водород не превратится в гелий.

Область лучистого переноса энергии следует за ядром. Полагают, что её толщина примерно равна радиусу ядра. Здесь в результате поглощения квантов, их дробления и переизлучения энергия переносится наружу.

Выше находится конвективная зона, толщиной примерно 200 тыс. км. Температура в конвективной зоне уже значительно ниже. Конвективная зона не может полностью передать огромное количество энергии, поэтому систематически ядерное вещество прорывается в наружные слои таким образом, что конвекция на Солнце напоминает кипение воды. Эта зона переходит во внешние слои Солнца – атмосферу. Солнечная атмосфера также состоит из нескольких слоев: фотосферы, хромосферы и короны.

Фотосфера – самый глубокий и тонкий слой атмосферы. Здесь возникает подавляющее количество световых и тепловых лучей, посылаемых в пространство. Толщина фотосферы 200-300 км, её температура оценивается в 6000К. За фотосферой следует хромосфера – слой раскаленных газов толщиной 10-20 тыс. км. Поскольку в верхних слоях солнечной атмосферы световая энергия в значительной степени переходит в тепловую, температура хромосферы значительно выше температуры фотосферы и оценивается в десятки тысяч К.

Корона – внешняя часть атмосферы Солнца. Температура в этой части Солнца – более 1млн.К. В короне плазма очень сильно разрежена, плотность ее в миллиарды раз меньше плотности воздуха. Поэтому корона еще прозрачнее, чем хромосфера и количество излучаемого ею света очень мало. Яркость короны в миллионы раз меньше яркости фотосферы. Температура по мере удаления от поверхности Солнца уменьшается.

Солнечная корона имеет огромные размеры – более 200 радиусов Солнца – и достигает орбиты Марса. Таким образом, Земля оказывается, образно говоря, погруженной в солнечную корону. В этой связи на Землю постоянно воздействует так называемый солнечный ветер – поток заряженных частиц, испускаемых Солнцем. При соприкосновении с атмосферой Земли он отклоняется верхними ее слоями – ионосферой. Хотя внешние слои солнечной атмосферы имеют температуру более 1млн.К, их излучение составляет ничтожную долю от общей энергии, испускаемой Солнцем. Почти вся энергия исходит от фотосферы, имеющей температуру около 6000К.

Изучение температуры в различных частях Солнца производится радиоастрономическими методами. Установлено, что чем выше температура тела, тем более интенсивно оно излучает радиоволны. Доходящее до нас радиоизлучение Солнца возникает не в фотосфере, а в его короне.

Периодически, с циклом в среднем около 11 лет, в солнечной атмосфере появляются активные области, число которых регулярно меняется. О возникновении активной области свидетельствуют солнечные пятна, наблюдаемые в фотосфере. Температура пятна примерно на 1000К ниже температуры окружающей фотосферы. В активной области часто наблюдаются вспышки, яркость которых высока. В результате вспышек образуются направленные потоки очень быстрых заряженных частиц и космических лучей. Достигая Земли, этот поток вызывает заметные неправильные изменения магнитного поля Земли – так называемые магнитные бури. Причина периодичности солнечной активности пока неясна. Предполагают, что строение Солнца и процессы, происходящие в нем, могут быть типичными и для многих других звезд.

Солнечная система.

В настоящее время является не решенной проблема происхождения Солнечной системы. Гипотезы ее возникновения следующие:

- планеты Солнечной системы сформировались путем объединения твердых, холодных тел и частиц, входящих в сосав туманности, которая когда-то окружала Солнце;

- спутники планет образовались из роя частиц, окружавших планеты.

Орбиты всех планет являются почти круговыми и лежат в одной плоскости, совпадающей с экваториальной плоскостью Солнца. Общая масса всех планет Солнечной системы составляет всего 2% от массы Солнца.

Теории происхождения Солнечной сисемы:

- небулярная гипотеза Канта-Лапласа;

- приливная;

- захват Солнцем облака межзвездного газа;

- кометная.

Небулярная гипотеза Канта-Лапласа. По Канту, орбитальное движение планет возникло «после нецентрального удара частиц как механизма возникновения первичной туманности» (ошибочное предположение, т.к. движение могло начаться только при косом ударе туманностей). Он считал причинами, противодействующими стремлению к «равновесию», химические процессы внутри Земли, которые зависят от космических сил и проявляются в виде землетрясений и вулканической деятельности (1755).

П.Лаплас исходил из горячей медленно вращающейся туманности, которая по мере охлаждения сжималась. По закону сохранения момента импульса при этом росла скорость вращения и центробежные силы отрывали от нее кольца. Материя в этих кольцах сжималась под действием тяготения, формируя компактные тел.

Приливная или планетозимальная гипотеза. В ХХ в. американцы Т.Чемберлен и Ф. Мультон рассмотрели идею встречи Солнца со звездой, вызвавшей приливной выброс солнечного вещества (1906), из которого и образовались планеты. С.Аррениус допустил и прямое столкновение Солнца со звездой (1913). В результате появилось некое волокно, распавшееся при вращении на части – основу планет. Дж. Джинс предположил (1916), что какая-то звезда прошла неподалеку от Солнца и вызвала «приливные выступы», принявшие форму газовых струй, из которых и возникли планеты.

Гипотеза захвата Солнцем межзвездного газа. Ее предположил шведский астрофизик Х.Альфен (1942). Атомы газа ионизировались при падении на Солнце и стали двигаться по орбитам в его магнитном поле, поступая в определенные участки экваториальной плоскости. Академик В.Г.Фесенко (астрофизик) предположил, что образование планет связано с переходом от одного типа ядерных реакций в глубинах Солнца к другому. Дж.Дарвин астроном и математик и математик А.М. Ляпунов рассчитали независимо друг от друга фигуры равновесия вращающейся жидкой несжимаемой массы. Согласно О.Струве, быстро вращающиеся звезды могу выбрасывать вещество в плоскости своих экваторов. В результате этого образуются газовые кольца и оболочки, а звезда теряет массу и момент количества движения.

Кометная гипотеза происхождения планет Солнечной системы. Распространена в настоящее время, предложил ее А.А.Маркушевич (1992). В газопылевой туманности, имеющей вид дискообразного вращающегося облака и состоящей из мелких пылевидных железосиликатных частиц и газов – воды и водорода, при понижении температуры газы намерзали на пылинки, увеличивая их размер. Возникал состав, свойственный составу комет. Частицы сталкивались между собой, большие по объему концентрировались в центре туманности, а меньшие оттеснялись на периферию, дав начало планетам. Шло укрепление и разрастание образующихся тел – астероидов, комет, планет. При образовании планет происходила аккреция (стяжение кометной массы), выделялась теплота, которая разогревала центр сгустка до расплавленного состояния и расслаивала водородную оболочку и железосиликатное ядро, которое позже расслоилось на железоникелевое ядро и силикатную оболочку, которая не позволяла рассеиваться теплоте в космическом пространстве. Так планета приобрела почти сферическую форму. По своим физическим характеристикам планеты Солнечной системы делятся на две группы: планеты земной группы и газовые (или планеты-гиганты).

Планеты Солнечной системы – земная группа. Крупнейшими после Солнца объектами Солнечной сис­темы являются планеты и их спутники. Общая масса пла­нет составляет 448 масс Земли, а спутников -0,12 массы Земли. Суммарная масса планет и спутников составляет лишь 1/750 часть массы Солнца. Планеты Солнечной сис­темы достаточно сильно различаются между собой.

Ближайшие планеты – Меркурий, Венера, Земля и Марс – называются твердыми планетами, поскольку име­ют плотность, в 4-5 раз превышающую плотность воды, и твердую поверхность. Плутон представляет собой несформировавшуюся твердую планету, по своим характеристикам напоминающую планеты первой группы. Кроме того, у Плутона есть спутник Харон, лишь в два раза меньший Плутона. Наконец, существуют предположения о большой десятой темной планете.

Каждую из планет можно охарактеризовать по девяти основным параметрам. Это такие параметры, как расстоя­ние от Солнца, период обращения вокруг Солнца, период обращения вокруг своей оси, средняя плотность (г/см3), диаметр экватора в километрах, относительная масса (масса Земли принимается за 1), температура поверхно­сти, число спутников, преобладание газа в атмосфере.

Ближайшей к Солнцу планетой является Меркурий. Он состоит из большого железного ядра, расплавленной каменистой мантии и твердой коры. По внешнему виду Меркурий напоминает Луну. Его поверхность испещрена кратерами и огромными уступами (высотой до 3 км), сформировавшимися в результате остывания и сжатия поверхности планеты. Сила тяжести на Меркурии в два раза меньше земной, поэтому атмосфера практически отсутствует. Царят безмолвие и экстремальные температу­ры – до 350 ‘С на освещенной Солнцем стороне планеты и до -170 "С на ночной стороне.

Венера по размерам, массе и плотности сходна с Зем­лей. Однако она имеет очень плотную атмосферу, пропускающую солнечное излучение и не выпускающую его обратно. Поэтому на Венере давно действует парниковый эффект, который сейчас отмечается на Земле. В результате этого эффекта температура поверхности Венеры составляет 400-500 "С. Поверхность Венеры сияет так ярко, что Венера занимает 3-е место по яркости (после Солнца и Луны) среди всех видимых с Земли объектов.

Ближайшее к Земле небесное тело – ее спутник. Луна. Луна имеет небольшое ядро из железа и серы, окружен­ное полурасплавленной астеносферой. Над астеносферой расположена литосфера (твердая каменная оболочка), и над ней – кора из минералов, богатых кальцием и алюминием. Поверхность Луны изрыта кратерами, имеет огромные равнины (моря) и горы.

Планеты Солнечной системы (газовые). Вторая четверка планет (Юпитер, Сатурн, Уран, Нептун) – газообразные, большие, с плотностью 0,7-1,7 г/см’ (т. е. чуть меньше или чуть больше плотности воды). Юпитер является крупнейшей планетой Солнечной системы. Вместе со своими 16 спутниками он составляет Солнечную систему в миниатюре. Масса Юпитера в три раза превосходит массу всех остальных планет Солнечной системы.

В центре Юпитера находится небольшое каменное ядро. Его окружает вначале слой металлического водорода, по свойствам напоминающего жидкий металл, затем слой жидкого водорода. Плотная атмосфера Юпитера состоит из водорода, гелия, метана и аммиака и по толщине в 8-10 раз превосходит земную атмосферу. Если попытаться высадиться на Юпитер, то космический аппарат будет долго тонуть в атмосфере, однако посадки так и не произойдет. Из 16 спутников Юпитера наиболее известны четыре, открытые еще Галилеем. Это Ио, Европа, Ганимед и Каллисто. Ио по размерам чуть больше Луны. Мощные приливные силы Юпитера разогревают ядро Ио, и на этом спутнике идет активная вулканическая деятельность.

Сатурн известен своими кольцами. В начале 1980-х гг. с помощью космического зонда «Вояджер» было выяснено, что кольца состоят из огромного количества кусков льда различного размера – от пылинок до глыб. Помимо колец, Сатурн имеет 17 спутников, из которых Титан имеет плотную атмосферу. Сатурн имеет самую низкую плотность среди планет Солнечной системы. Его небольшое ядро из льда и камня окружено слоями металлического и жидкого водорода. В атмосфере Сатурна бушуют ветры, скорость которых достигает 1800 км/ч. Уран, Нептун и Плутон удалены настолько, что достоверной информации об их составе не удавалось получить до 1986 г. В 1986 г. космический зонд «Вояджер-2» передал фотографии Урана и Нептуна, по которым были установлены состав атмосферы и наличие вихрей, а также обнаружены спутники этих планет.

Кометы, астероиды, метеорное вещество. Помимо девяти крупных спутников (планет), Солнце имеет множество мелких спутников, называемых астероидами. Большинство из них находится в поясе астероидов, между орбитами Марса и Юпитера. Есть также группа астероидов (Троянцы и Греки), движущаяся вдоль орбиты Юпитера, и другие группы. Всего в астрономических ка­талогах зафиксировано более 6000 малых планет.

Помимо астероидов, движущихся по орбитам, подобным орбитам планет, Солнечную систему пересекают ко­меты. Орбиты комет одним фаем приближены к Солнцу, другим удалены от него иногда на очень значительные расстояния. Например, удаленный край орбиты кометы Энке с периодом обращения 3,3 года не достигает орбиты Юпитера. Орбита кометы Галлея с периодом обращения 76 лет не достигает орбиты Плутона. Орбита кометы Когоутека с периодом обращения 75 000 лет выходит далеко за пределы орбиты Плутона.

По современным гипотезам кометы представляют собой огромные глыбы из льда и камня, которые испаряются при подходе к Солнцу и образуют газовый и пылевой хвосты, направленные от Солнца. Со временем кометы рассыпаются, оставляя после себя облака пыли. Ежегодно в августе Земля проходит через полосу пыли, оставшуюся от кометы Свифта-Тутля, и в эти периоды можно наблюдать метеорные дожди, называемые «Персеидами». Землю ежесекундно бомбардируют тысячи метеори­тов – обломков космических тел. Однако большинство из них сгорают в атмосфере, не достигая поверхности Зем­ли. Крупные метеориты могут взрываться, оставляя кра­теры. Средние и мелкие метеориты, закаленные огнем и космическим пространством, часто служат объектами поклонения (священные камни) верующих.

kursak.net

Млечный путь и его спутники на сайте Игоря Гаршина

Современные астрофизики пришли к выводу, что Млечный Путь представляет собой спиральную галактику с перемычкой. В средней части ее находится утолщение, (по астрономической терминологии — балдж), длина которого в поперечнике составляет около 8000 парсеков. В центре же, по всей вероятности, расположена сверхмассивная черная дыра массой 4,3*106 масс Солнца, вокруг которой вращается другая, средней массы. В центре черной дыры находится радиоисточник, звезда Стрелец А. Гравитационное воздействие этих чёрных дыр влияет на траектории движения соседних звезд.

Галактика Млечный путь содержит порядка 400 миллиардов звёзд [?]! Везде разные данные: от 100-200 млн. до 100-400 млрд.!] Ее радиус составляет около 50000, а толщина - около 30000 [явная ошибка, слишком "толстая" - встречал цифру 1000 - но это слишком "худая"] световых лет. Центр Галактики - в созвездии Стрельца. Полный оборот вокруг центра [т.е. движение рукавов - волн плотности?] она совершает примерно за 200 млн. лет (есть и другие цифры - 180, 216, 250...).

Масса Галактики оценивается в 3×1012 масс Солнца, или 6×1042 кг (январь 2009). Большая её часть содержится не в звёздах и межзвёздном газе, а в несветящемся гало из тёмной материи.

На самом деле это касается "видимого" диска. Полная масса и размер Млечного Пути гораздо больше, как оказалось. За последние годы были открыты звезды, скопления и облака газа на расстоянии около 100 кпк от центра Галактики. Так что диаметр нашего звездного дома стал почти 200 кпк!

Наша галактика Млечный путь (МП) входит в Местную группу галактик. Местная группа галактик, в свою очередь, входит в Местное сверхскопление галактик (Сверхскопление Девы) размером около 200 миллионов световых лет (1,89*1024м) и массой 2·1045кг. Крупнейшим объектом сверхскопления является Скопление Девы. Наиболее крупными галактиками местной группы являются Туманность Андромеды (ТА), галактика Млечный Путь (МП), галактика Треугольника (ГТ) и галактики Большого и Малого Магеллановых облаков (БМО и ММО).

Разделы страницы о нашей галактике Млечный путь:

  • Строение и динамика Млечного Пути
  • Местное скопление звёзд и Местная группа звёзд
  • Положение и траектория Солнечной системы в Галактике
  • Туманности-спутники нашей Галактики
  • Галактики-пришельцы
  • Магеллановы облака - спутники или пришельцы?

Строение и динамика Млечного Пути

Анатомия и физиология нашей галактики.

Спиральная структура Млечного Пути

Спиральные рукава - "годовые кольца" галактик?

Спиральная структура нашей галактики Млечный Путь недостаточно подробно изучена и является перспективной темой для науки. Она имеет, как минимум, 5 спиральных рукавов (перечислим от центра к краю):

  1. рукав Лебедя,
  2. рукав Центавра (Щита-Центавра),
  3. рукав Стрельца,
  4. рукав Ориона [самый короткий]
  5. рукав Персея [продолжает р. Лебедя?].

Рукава так названы по основному положению своих массивов в соответствующих созвездиях.

Рукава Млечного Пути состоят из звёзд населения I (к которому принадлежит и наше Солнце) и различных объектов. Эти объекты представляют собой, в частности, молодые звёзды, области H II и рассеянные звёздные скопления.

Будущее Млечного Пути

ближайшие четыре миллиарда лет Млечный Путь должен поглотить свои галактики-спутники Большое и Малое Магеллановы Облака. Через пять миллиардов лет, когда все небольшие объекты будут поглощены, должно начаться слияние Млечного Пути и Туманности Андромеды.

Менее чем через восемь миллиардов лет Солнце покинет главную последовательность, увеличившись в размерах до 300 раз. К этому времени Земля будет поглощена светилом или превратится в сухую каменистую планету без атмосферы. Фаза красного гиганта завершится сбросом внешних слоев Солнца и образованием планетарной туманности, в центре которой будет располагаться белый карлик размером с современную Землю.

Высокоскоростные потоки в Млечном Пути

Астрономы считают, что по нашей галактике Млечный путь могут незримо носиться десятки миллиардов планет, не привязанных ни к каким звездам. Кроме того, им известно около двух десятков звезд, стремительно убегающих от нашей Галактики, и даже целое звездное скопление, убегающее из гигантской галактики М87. Эти объекты объединяет одно – когда-то все они были «вышвырнуты» из своего дома за счет гравитационных возмущений. Российские астрономы Игорь Чилингарян и Иван Золотухин из ГАИШ МГУ доказали, что выброшенными своими соседями в межгалактическое пространство могут быть и целые галактики.

Новости о нашей Галактике (Млечном пути)

  • Форма Млечного пути оказалась ненормальной.

Местное скопление звёзд и Местная группа звёзд

Солнечная система принадлежит Местной группе звёзд, которая является частью Местного скопления звёзд (пояса Гулда), причём каждая из этих систем имеет свой центр вращения.

Пояс Гулда (Местное скопление звёзд) - группа молодых массивных звёзд, возрастом 10—30 млн лет, образующая диск диаметром 500—1000 пк, центр которого находится на расстоянии 150—250 пк от Солнца в направлении антицентра Галактики. Назван в честь Бенджамина Гулда, впервые обратившего в 1879 г. внимание на то, что яркие звёзды на небе образуют пояс, наклонённый к плоскости Млечного Пути под углом 15-20°.

Пояс имеет массу около 1 млн солнечных, размер 2-3 тыс. св. лет, немного вытянут, вращается как единое целое и медленно расширяется. Солнце находится недалеко от центра этого сплюснутого кольца, который расположен в 400-500 св. годах от нас в сторону созвездия Персея. Такое расположение в поясе и позволяет нам любоваться кольцом ярких звезд на небе. Наше Солнце и скопление звёзд Местной группы обходят пояс Гулда примерно за 18 млн лет.

Положение и траектория Солнечной системы в Галактике

Положение Солнечной системы в Галактике

Солнечная система в настоящее время находится в небольшом Местном рукаве, или Рукаве Ориона (иногда обозначаемом как «0»), толщиной приблизительно в 3 500 световых лет и приблизительно 10 000 световых лет в длину. Рукав Ориона соединён с двумя более крупными — внутренним рукавом Стрельца (обозначаемом как «–I») и внешним Рукавом Персея (обозначаемом как «+I»).

Наше Солнце находится от центра Галактики на расстоянии 26000 св. лет (по другим данным - примерно 2/3 от радиуса) - это будет 2,6•104 x 9,46•1015 = 2,4956•1020 м. Оно вращается вокруг центра Галактики со скоростью 220÷230 км/с. Вектор этой скорости направлен в сторону созвездия Лебедя.

На самом деле, у каждого астронома свой "мерный шест". Чтобы как-то исправить это положение, в 1963 г. астрономическое сообщество договорилось принять единые значения важнейших величин, характеризующих размеры Галактики (R0) и скорость ее вращения в районе орбиты Солнца (V0). Было решено придерживаться значений R0=10 кпк и V0=250 км/с. В 1985 г. Генеральная ассамблея Международного астрономического союза рекомендовала использовать новые значения: R0=8,5 кпк и V0=220 км/с. Однако далеко не все астрономы согласны с тем, что они точнее старых. Каждый год публикуется три-четыре работы по измерению и результаты колеблются от 7 до 11 кпк.

Кроме того, Солнечная система имеет и собственное (пекулярное) движение между звёзд Галактики. Пекулярная скорость Солнца - около 19 км/с и направлена между созвездиями Лира и Геркулес.

Траектория Солнечной системы в Млечном Пути

Пересекает ли наша планетная система рукава Галактики?

По одной версии, Солнечная система пересекает рукава Центавра, Стрельца, Ориона и Персея за время движения по своей полуокружности (рисунок выше), причём, рукав Стрельца не просто пересекает, а некоторое время перемещается вдоль него. По другой, пересечение происходит трижды с равными промежутками - через рукава Персея, Щита (Кентавра), Стрельца (рисунок слева).

Вероятно, как раз 70 млн лет назад Солнечная система пересекла рукав Стрельца или Центавра - и диназавров засыпало планетезималями. Лимонов так через 130 мы опять пересечём этот рукав...

Возможно, оледенения на Земле вызваны именно прохождением нашей планетной системы через рукава Млечного пути, особенно через самый катастрофичный рукав Щита (Центавра):

  1. Юрское глобальное оледенение (140 млн. л. н.) [разве было такое??] - рукав Центавра. [Никаких свидетельств широкого распространения оледенения в юрское время не установлено. Восточная Антарктида занимала наиболее северное положение, поэтому если следы юрского оледенения и существуют, их следует искать на территории, ныне занятой антарктическим ледниковым покровом.]
  2. Каменноугольное глобальное оледенение (280 млн. л. н.) - рукав Стрельца
  3. Вендское глобальное оледенение (570 млн. л. н.) - рукав Центавра
  4. Неопротерозойское оледенение (790 млн. л. н.) - рукав Центавра
  5. Гуронское оледенение (1000 млн. л. н.) [а не Гнейсёсское? Гуронское - 2400!] - рукав Центавра
  6. Тимискаминское [раннепротерозойское - тиллоиды Швеции] оледенение (1200 млн. л. н.) - рукав Центавра
  7. Палеопротерозойское оледенение (1650 млн. л. н.) - рукав Центавра
  8. Риасское оледенение (2000 млн. л. н.) - рукав Стрельца
  9. Неоархейское оледенение (2650 млн. л. н.) - рукав Стрельца

А  вот другие данные, согласно которым СС находится рядом с окружностью, где Кеплерова скорость звёзд и твердотельное движение волн плотности (рукавов) совпадают. Эта зона называется коротационной окружностью. Значит Солнце эти рукава не пересекает или почти не пересекает. И именно поэтому земная жизнь обережена от, возможно, жестокого излучения в рукавах и вспышек там сверхновых.

«В окрестностях Солнца удается проследить участки двух спиральных ветвей, удаленных от нас примерно на 3 тыс. световых лет. По созвездиям, где обнаруживаются эти участки, их называют рукавом Стрельца и рукавом Персея. Солнце находится почти посередине между этими спиральными ветвями. Правда, сравнительно близко от нас, в созвездии Ориона, проходит еще одна, не столь явно выраженная ветвь, считающаяся ответвлением одного из основных спиральных рукавов Галактики.

Расстояние от Солнца до центра Галактики составляет 23-28 тыс. световых лет. Это говорит о том, что Солнце расположено посередине между центром и краем диска. Вместе со всеми близкими звездами Солнце вращается вокруг центра Галактики со скоростью 200-220 км/с, совершая оборот примерно за 200 млн. лет. Значит, за все время своего существования Земля облетела вокруг центра Галактики не более 30 раз.

Скорость вращения Солнце вокруг центра Галактики практически совпадает с той скоростью, с которой в данном районе движется волна уплотнения, формирующая спиральный рукав. Такая ситуация в общем неординарна для Галактики: спиральные ветви вращаются с постоянной угловой скоростью, как спицы колеса, а движение звезд подчиняется совершенно иной закономерности. Поэтому почти все звездное население диска то попадает внутрь спиральных ветвей, то выходит из них.

Единственное место, где скорости звезд и рукавов совпадают, – это так называемая коротационная окружность. Именно вблизи нее и располагается Солнце. Для Земли это обстоятельство крайне благоприятно. Ведь в спиральных ветвях происходят бурные процессы, порождающие мощное излучение, губительное для всего живого. И никакая атмосфера не могла бы от него защитить. Но наша планета существует в относительно спокойном месте Галактики и в течение сотен миллионов и миллиардов лет не испытывала катастрофического влияния космических катаклизмов».

  • Исключительно ли положение Солнечной системы в Галактике? Л. С. Марочник. Журнал "Природа" №6 за 1982 г. стр. 24-30. 2 концепции на основе аномального содержания изотопов плутония и йода в Солнечной системе.
Возможные колебания Солнечной орбиты

Обращение Солнца вокруг центра Галактики носит также колебательный характер: каждые 33 миллиона лет оно пересекает галактический экватор, затем поднимается над его плоскостью на высоту в 230 световых лет и снова опускается вниз, к экватору. [Сведения не проверены, возможно, это чья-то фантазия, но что интересно: 33 млн. лет - геологический цикл рифтогенеза и радиационный цикл Земли.]

Вот другие сведения - из книги В.Голубева "Геокосмос". Движение Солнечной системы по эллиптической орбите описано П. П. Паренаго и эта модель видного астронома 50-х годов XX века лучше согласуется с геологией. Полный период обращения составляет 212 млн лет. Аномалистический период, прохождение через перигалактий, составляет 176 млн лет. Следующее прохождение перигалактия будет через 12 млн лет, а апогалактий был пройден 76 млн лет назад. Драконический полупериод, прохождение противоположных узлов орбиты (колебание Солнечной системы относительно плоскости Галактики), составляет 88 млн лет. Расстояние от центра Галактики в перигалактии, апогалактии и в среднем составляет 7,12, 8,59 и 7,86 тыс. пк. Эксцентриситет орбиты 0,09. Линейная скорость достигает в перигалактии и апогалактии 250 и 207 км/с. Наклон орбиты +1,37°. По другим астрофизическим моделям полный период обращения составляет от 165 до 260, в среднем 200–220 млн лет.

И, наконец, приведём авторитетные сведения из книги Барта Бока "Млечный путь". Движение Солнца лишь слегка отличается от кругового галактического вращения в его окрестностях. Мы можем считать, что Солнце движется по эллипсу с малым эксцентриситетом и в то же время совершает медленные колебания перпендикулярно галактической плоскости. Оно, по-видимому, всегда остаётся в пределах 200 пс от галактической плоскости и совершает 2-3 колебания в перпендикулярном направлении за 250 млн. лет, т.е., за время полного оборота вокруг центра Галактики. (с. 147)

Галактический год и Галактическая парадигма

В  результате своих расчетов Паренаго нашел, что орбита Солнца близка круговой, а его сидерический, аномалистический и драконический периоды движения составляют 212, 176 и 85 млн. лет, соответственно.

Одни считают, что галактический год длится 176 млн. лет, другие — 212, 216 и даже 250 млн. лет. В школьных учебниках астрономии до сих пор стоит цифра 180-200 миллион лет. В новых книгах по астрономии называются цифры 230-240 млн лет. А изучение геохронологической шкалы даёт величину 185-190 млн лет [на взгляд автора].

Давайте вычислим сами. Скорость Солнца по орбите где-то 220 км/с, а расстояние от него до центра Галактики - примерно 8 кпк: 8 x 3,09•1016км? - примерно 2,5•1020?. Тогда период обращения 2πR/v = 6,28 x 2,5•1020 / 22•104 - получается около 7•1015 с или ~200 млн лет.

Более точный расчёт: T = 2 x 3,1416 x 8 x 3,08568•1019 / 2,2•105 = 7,05016•1015. В сидерическом году 365,24219 суток - значит, T = 7,05016•1015 / (365,24219 * 24 * 3600) = 223,4•106 лет. Хотя, не факт, что Галактика сотни миллионов лет вращается с одной и той же скоростью (и по постоянной орбите).

Туманности-спутники нашей галактики

У  галактики Млечный Путь десятка полтора спутников. Самые известные – Большое и Малое Магеллановы облака [которые, на самом деле, оказались не спутниками, а пролетающими мимо соседями]. Остальные спутники менее заметные и яркие.

С  конца 30-х годов XX века обнаружены скопления-спутники в созвездиях

  1. Скульптора,
  2. Печи,
  3. Льва (2 карликовых галактики),
  4. Дракона,
  5. Малой Медведицы,
  6. Сектанта,
  7. Киля,
  8. Стрельца [карликовая галактика, 9-я, ближайшая],
  9. Большого Пса [10-я],
  10. Большой Медведицы [карликовая сфероидальная галактика, удаленной на 100 кпк - 11-я или 13-я с БМО и ММО] и т.д.

Есть и “спорные” объекты. Наша Галактика вместе с Туманностью Андромеды и некоторыми другими образуют местную группу галактик. Массы Туманности Андромеды и Млечного Пути сопоставимы, поэтому есть объекты, которые нельзя отнести ни к одному из центров.

На сегодняшний день у Млечного Пути насчитывается около 50 галактик-спутников, среди которых одна из самых крупных — карликовая эллиптическая галактика в Стрельце. Она вызывает особый интерес у исследователей, так как, во-первых, находится очень близко к Земле (всего в 70 тысячах световых лет), а во-вторых, она может быть ответственна за образование рукавов Млечного Пути.

Источники:

  • Русские спутники Млечного Пути. Российские астрономы обнаружили сразу девять новых спутников нашей галактики.
  • Астрономы вычислили положение невидимого спутника нашей Галактики. «Галактика X» двигается по параболической орбите вокруг Млечного пути и сейчас находится на расстоянии 300 тысяч св.л. от его центра.
  • Призраки погибших галактик. Сотни маленьких галактик были разорваны на куски нашей галактикой и превратились в разреженные потоки звезд, медленно перемешивающиеся с ее коренным населением.
  • Млечный Путь застали за кражей звезд.

Галактики-пришельцы

Галактики - попутчики, переходящие дорогу, повстречавшиеся и атакующие...

  • Учёные предсказали столкновение Млечного Пути с будущей галактикой. Облако Смита, представляющее собой изрядную порцию бедного металлами нейтрального и ионизированного газа (водорода в основном), движется к Млечному Пути и столкнётся с ним примерно через 27 миллионов лет. оно уже однажды протыкало диск Млечного Пути - вероятно, это произошло около 70 миллионов лет назад [как раз когда погибли динозавры - получается, оно втыкается в нас каждые 100 млн. лет?].

Магеллановы облака - спутники или пришельцы?

Магеллановы Облака, возможно, не спутники Галактики, а пролетающие мимо пришельцы.

Большое Магелланово Облако (БМО)

Большое Магелланово Облако (БМО) - карликовая галактика типа SBm, расположенная на расстоянии около 50 килопарсек от нашей галактики. БМО приблизительно в 20 раз меньше по диаметру чем Млечный путь и содержит приблизительно 5 миллиардов звезд (1/20 [?] от их числа в нашей Галактике). Масса БМО примерно в 300 раз меньше массы Млечного Пути (масса БМО = 1010 масс Солнца). БМО является четвертой по массе галактикой в Местной Группе (после М31, Млечного пути, М33).

  • Магеллановы облака проткнули Галактику пальцем. Открыта колоссальная струя водорода, которая вытекает из Магеллановых облаков и пронзает диск нашей родной Галактики. Этот сверхдлинный выброс (HVC306-2+230) врезается в Галактику в точке, отстоящей на 70 тысяч световых лет от Солнца. На нашем небе район этого космического столкновения находится примерно в созвездии Южный Крест.

Малое Магелланово Облако (ММО)

Малое Магелланово Облако (ММО) содержит только 1,5 миллиарда звезд. Находится на расстоянии около 60 килопарсек в созвездии Тукана и выглядит как тускло светящееся облако размером около 3°.

Ключевые слова для поиска сведений о нашей Галактике Млечный путь и его спутниках:

На русском языке: Наша галактика, Млечный путь, Большое и Малое Магелланово облако, спутники Галактики, БМО; На английском языке: Galaxy, Milky Way.

www.garshin.ru



О сайте

Онлайн-журнал "Автобайки" - первое на постсоветском пространстве издание, призванное осветить проблемы радовых автолюбителей с привлечение экспертов в области автомобилестроения, автоюристов, автомехаников. Вопросы и пожелания о работе сайта принимаются по адресу: Онлайн-журнал "Автобайки"