11.3.1. Показательная функция, ее свойства и график. Функция y


линейная функция, квадратичная, кубическая и y=1/x

 

Степенной называется функция вида y=xn (читается как y равно х в степени n), где n – некоторое заданное число. Частными случаями степенных функций является функции вида y=x, y=x2, y=x3, y=1/x и многие другие. Расскажем подробнее о каждой из них.

Линейная функция y=x1 (y=x)

График прямая линия, проходящая через точку (0;0) под углом 45 градусов к положительному направлению оси Ох.

График представлен ниже.

Основные свойства линейной функции:

  • Функция возрастающая и определена на всей числовой оси. 
  • Не имеет максимального и минимального значений. 

Квадратичная функция y=x2

Графиком квадратичной функции является парабола. 

Общий вид параболы представлен на рисунке ниже.

Основные свойства квадратичной функции:

  • 1.  При х =0, у=0, и у>0 при х0
  • 2. Минимальное значение  квадратичная функция достигает в своей вершине. Ymin при x=0; Следует также заметить, что максимального значения у функции не существует.
  • 3. Функция убывает на промежутке (-∞;0] и возрастает на промежутке [0;+∞). 
  • 4. Противоположным значениям х соответствует одинаковые значения y. 

Кубическая функция y=x3

Графиком кубической функции называется кубическая парабола.

Общий вид параболы представлен на рисунке ниже.  

Основные свойства кубической функции:

  • 1. При х =0, у=0. у>0 при х>0 и y
  • 2. У кубической функции не существует не максимального ни минимального значения.
  • 3. Кубическая функция возрастает на всей числовой оси (-∞;+∞).
  • 4. Противоположным значениям х, соответствуют противоположные значения y.

Функция вида y=x-1 (y=1/x)

Графиком функции y=1/x называется гипербола.

Общий вид гиперболы представлен на рисунке ниже.

Основные свойства функции y = 1/x:

  • 1. Точка (0;0) центр симметрии гиперболы. 
  • 2. Оси координат – асимптоты гиперболы.
  • 3. Прямая y=x ось симметрии гиперболы.
  • 4. Область определения функции все х, кроме х=0.
  • 5. y>0 при x>0; y
  • 6. Функция убывает как на промежутке (-∞;0), так и на промежутке (0;+∞).
  • 7. Функция не ограничена ни снизу, ни сверху.
  • 8. У функции нет ни наибольшего, ни наименьшего значений.
  • 9. Функция непрерывна на промежутке (-∞;0) и на промежутке (0;+∞). Имеет разрыв в точке х=0.
  • 10. Область значений функции два открытых промежутка (-∞;0) и (0;+∞).

Нужна помощь в учебе?

Предыдущая тема: Четные и нечетные функции: графики и свойства Следующая тема:&nbsp&nbsp&nbspОпределение корня n-ой степени: извлечение корня

Все неприличные комментарии будут удаляться.

www.nado5.ru

График функции y=f(x)/k | Алгебра

График функции y=f(x)/k  (где k>1) может быть получен из графика функции y=f(x) с помощью сжатия к оси Ox в k раз.

При таком преобразовании каждая точка (x; y) графика функции y=f(x) переходит в точку (x; y/k) графика функции y=f(x)/k:

(x; y) → (x; y/k)

(то есть абсцисса (x) каждой точки начального графика остаётся неизменной, а ордината (y) уменьшается в k раз).Точки, лежащие на оси Ox при сжатии к оси абсцисс остаются на месте (так как 0/k=0).

Примеры.

1) График функции y=x²/3 можно получить из графика функции y=x² сжатием к оси Ox в 3 раза.

Строим параболу y=x² (достаточно отметить базовые точки). Координату x каждой точки оставляем без изменения, координату y делим на 3.

(1; 1) → (1; 1/3),

(-1; 1) → (-1; 1/3),

(2; 4) → (2; 4/3),

(-2; 4) → (-2; 4/3),

(3; 9) → (3; 3),

(-3; 9) → (-3; 3).

Таким образом, каждая точка нового графика соответственно располагается под точкой первоначального графика, но в 3 раза ближе к оси абсцисс.

Вершина параболы при сжатии к оси Ox остаётся на месте (0:3=0).

 

2) График функции y=x³/4 может быть получен из графика функции y=x³ сжатием к оси абсцисс в 4 раза.

Для построения графика абсциссы базовых точек графика кубической функции оставляем неизменными, а каждую ординату делим на 4:

 

 

(1; 1) → (1; 1/4),

(-1; -1) → (-1; -1/4),

(2; 8) → (2; 8/3),

(-2; 8) → (-2; -8/3).

Точка (0; 0) при таком преобразовании остаётся на месте.

 

 

3) График функции y=(1/2)√x можно получить сжатием к оси Ox графика функции y=√x.

Координату x каждой из базовых точек графика y=√x оставляем без изменений, координату y делим на 2:

(0; 0) →  (0; 0),

(1;1) →  (1; 1/2),

(4; 2) →  (4; 1),

(9; 3) → (9; 9/2)  и т. д.

 

Геометрические преобразования дают возможность на основании графиков элементарных функций строить многие другие графики. Умение строить графики  функций востребовано при решений заданий из различных разделов алгебры.

www.algebraclass.ru

Функции y=|x|, y=[x],y={x}, y=sign(x) и их графики. Функция f(x)=|x|

Функция $f(x)=|x|$

$|x|$ - модуль. Он определяется следующим образом: Если действительное число будет неотрицательным, то значение модуля совпадает с самим числом. Если же отрицательно, то значение модуля совпадает с абсолютным значением данного числа.

Математически это можно записать следующим образом:

Пример 1

Исследуем и построим её график.

  1. $D\left(f\right)=R$.
  2. По определению модуля действительного числа, получим, что$E\left(f\right)=[0,\infty )$
  3. $f\left(-x\right)=|-x|=|x|=f(x)$. Значит, функция четна.
  4. При $x=0,\ y=0$. Точка $\left(0,0\right)$ -- единственное пересечение с координатными осями.
  5. \[f'\left(x\right)=\left\{ \begin{array}{c} {1,x >0,} \\ {-1,xФункция будет возрастать на промежутке $x\in (0,+\infty )$

    Функция будет убывать на промежутке $x\in (-\infty ,0)$

  6. Значения на концах области определения.

    \[{\mathop{\lim }_{x\to -\infty } y\ }=+\infty \] \[{\mathop{\lim }_{x\to +\infty } y\ }=+\infty \]

    Рисунок 1.

Функция $f(x)=[x]$

Функция $f\left(x\right)=[x]$ - функция целой части числа. Она находится округлением числа (если оно само не целое) «в меньшую сторону».

Пример: $[2,6]=2.$

Пример 2

Исследуем и построим её график.

  1. $D\left(f\right)=R$.
  2. Очевидно, что эта функция принимает только целые значения, то есть $\ E\left(f\right)=Z$
  3. $f\left(-x\right)=[-x]$. Следовательно, эта функция будет общего вида.
  4. $(0,0)$ -- единственная точка пересечения с осями координат.
  5. $f'\left(x\right)=0$
  6. Функция имеет точки разрыва (скачка функции) при всех $x\in Z$.

Рисунок 2.

Функция $f\left(x\right)=\{x\}$

Функция $f\left(x\right)=\{x\}$ -- функция дробной части числа. Она находится «отбрасыванием» целой части этого числа.

$\{2,6\}=0,6$

Пример 3

Исследуем и построим график функции

  1. $D\left(f\right)=R$.

  2. Очевидно, что эта функция никогда не будет отрицательной и никогда не будет больше единицы, то есть $\ E\left(f\right)=[0,1)$

  3. $f\left(-x\right)=\{-x\}$. Следовательно, данная функция будет общего вида.

    Пересечение с осью $Ox$: $\left(z,0\right),\ z\in Z$

    Пересечение с осью $Oy$: $\left(0,0\right)$

  4. $f'\left(x\right)=0$

  5. Функция имеет точки разрыва (скачка функции) при всех $x\in Z$

    Рисунок 3.

Функция $f(x)=sign(x)$

Функция $f\left(x\right)=sign(x)$ -- сигнум-функция. Эта функция показывает, какой знак имеет действительное число. Если число отрицательно, то функция имеет значение $-1$. Если число положительно, то функция равняется единице. При нулевом значении числа, значение функции также будет принимать нулевое значение.

Математически это можно записать следующим образом:

Пример 4

Исследуем и построим график функции

  1. $D\left(f\right)=R$.
  2. Непосредственно из определения, получим
  3. \[\ E\left(f\right)=\left\{-1\right\}\cup \left\{0\right\}\cup \{1\}\]
  4. $f\left(-x\right)=sign\left(-x\right)=-sign(x)$. Следовательно, данная функция будет нечетной.

    Пересечение с осью $Ox$: $\left(0,0\right)$

    Пересечение с осью $Oy$: $\left(0,0\right)$

  5. $f'\left(x\right)=0$

  6. Функция имеет точку разрыва (скачка функции) в начале координат.

    Рисунок 4.

spravochnick.ru

ее график и свойства при k0

 

Рассмотрим функцию y=k/y. Графиком этой функции является линия, называемая в математике гиперболой. Общий вид гиперболы, представлен на рисунке ниже. (На графике представлена функция y равно k разделить на x, у которой k равно единице.)

Видно, что график состоит из двух частей. Эти части называют ветвями гиперболы. Стоит отметить также, что каждая ветвь гиперболы подходит в одном из направлений все ближе и ближе к осям координат. Оси координат в таком случае называют асимптотами.

Вообще любые прямые линии, к которым бесконечно приближается график функции, но не достигает их, называются асимптотами. У гиперболы, как и у параболы, есть оси симметрии. Для гиперболы, представленной на рисунке выше, это прямая y=x.

Теперь разберемся с двумя общими случаями гипербол. Графиком функции y = k/x, при k ≠0, будет являться гипербола, ветви которой расположены либо в первом и третьем координатных углах, при k>0, либо во втором и четвертом координатных углах, при k<0.

Основные свойства функции y = k/x, при k>0

График функции y = k/x, при k>0

1. Точка (0;0) центр симметрии гиперболы.

2. Оси координат – асимптоты гиперболы.

3. Прямая y=x ось симметрии гиперболы.

4. Область определения функции все х, кроме х=0.

5. y>0 при x>0; y6. Функция убывает как на промежутке (-∞;0), так и на промежутке (0;+∞).

7. Функция не ограничена ни снизу, ни сверху.

8. У функции нет ни наибольшего, ни наименьшего значений.

9. Функция непрерывна на промежутке (-∞;0) и на промежутке (0;+∞). Имеет разрыв в точке х=0.

10. Область значений функции два открытых промежутка (-∞;0) и (0;+∞).

Основные свойства функции y = k/x, при k<0

График функции y = k/x, при k<0

1. Точка (0;0) центр симметрии гиперболы.

2. Оси координат – асимптоты гиперболы.

3. Прямая y=-x ось симметрии гиперболы.

4. Область определения функции все х, кроме х=0.

5. y>0 при x0.

6. Функция возрастает как на промежутке (-∞;0), так и на промежутке (0;+∞).

7. Функция не ограничена ни снизу, ни сверху.

8. У функции нет ни наибольшего, ни наименьшего значений.

9. Функция непрерывна на промежутке (-∞;0) и на промежутке (0;+∞). Имеет разрыв в точке х=0.

10. Область значений функции два открытых промежутка (-∞;0) и (0;+∞).

Нужна помощь в учебе?

Предыдущая тема: Преобразование рациональных выражений: способы преобразований и примеры Следующая тема:&nbsp&nbsp&nbspРациональные числа: определение, сумма, разность, умножение, деление

Все неприличные комментарии будут удаляться.

www.nado5.ru

Виды функций и их графики

Поиск Лекций

Понятие функции

Зависимость одной переменной у от другой х, при которой каждому значению переменной х из определенного множества D соответствует единственное значение переменной у, называется функцией.

Общий вид функции: у = f(х),

где х – независимая переменная (аргумент), у – зависимая переменная (функция).

Область определения функции D(f)- множество, на котором задаётся функция. Другими словами: множество значений, которые может принимать аргумент.

Область значений функции E(f)- множество, состоящее из всех значений, которые принимает функция.

График функции – множество точек на координатной плоскости, координатами которых являются пары чисел (х; у), где х – значение аргумента, у – соответствующее ему значение функции.

Нули функции – значения аргумента, при которых функция равна 0.

Виды функций и их графики

ü Линейная функция y = kx + m

График функции – прямая.

Коэффициент k отвечает за угол наклона (k>0 – угол острый, k<0 – угол тупой, k=0 – горизонтальная прямая), m – за сдвиг графика вверх-вниз (m>0 – вверх, m<0 – вниз).

у = kx – частный случай линейной функции при m=0.

В этом случае график функции обязательно проходит через начало координат.

Свойства функции y = kx + m

1) D(f) = (-∞; +∞)

2) Возрастает, если k > 0; убывает, если k < 0

3) Не ограничена ни снизу, ни сверху

4) Нет ни наибольшего, ни наименьшего значений

5) E(f) = (-∞; +∞)

ü Функция y = kx² (k ≠ 0)График функции – парабола.

Свойства функции y = kx² Если k > 0

1) D(f) = (-∞; +∞)

2) Убывает на луче (-∞; 0], возрастает на луче [0; +∞)

3) Ограничена снизу, не ограничена сверху

4)

y наим = 0, у наиб не существует

5) Непрерывна

6) E(f) = [0; +∞)

Если k < 0

1)

D(f) = (-∞; +∞)

2) Возрастает на луче (-∞; 0], убывает на луче [0; +∞)

3) Не ограничена снизу, ограничена сверху

4) y наим не существует, у наиб = 0

5) Непрерывна

6) E(f) = (-∞; 0]

ü Квадратичная функция y = ax² + bx + c

График функции – парабола, у которой:

® вершинарасполагается в точке (x0; y0), где x0 = , y0 = f(x0)

® ветви, направлены вверх, если а > 0, и вниз, если а < 0

® прямая х = х0 является осью симметрии параболы.

Число с – ордината точки пересечения параболы с осью Оу.

Свойства функции y = ax² + bx + c

Если а > 0

1) D(f) = (-∞; +∞)

2)

Убывает на луче (-∞; - ], возрастает на луче [- ; +∞)

3) Ограничена снизу, не ограничена сверху

4) y наим = 0, у наиб не существует

5) Непрерывна

6) E(f) = [y0; +∞)

Если а > 0

1)

D(f) = (-∞; +∞)

2) Возрастает на луче (-∞; - ], убывает на луче [- ; +∞)

3) Не ограничена снизу, ограничена сверху

4) yнаим не существует, унаиб = 0

5) Непрерывна

6) E(f) = (-∞; y0]

ü

Функция обратной пропорциональности y =

График функции – гипербола.

Свойства функции y =

1) D(f) = (-∞; 0) (0; +∞)

2) Если k > 0, то функция убывает на промежутке (-∞; 0) (0; +∞)

Если k < 0, то функция возрастает на промежутке (-∞; 0) (0; +∞)

3) Не ограничена ни снизу, ни сверху

4) Нет ни наименьшего, ни наибольшего значений

5) Функция непрерывна на открытом луче (-∞; 0) и на открытом луче (0; +∞)

6) E(f) = (-∞; 0) (0; +∞)

ü Функция y =

График функции – ветвь параболы, перевернутая «набок».

Свойства функции y =

1) D(f) = [0; +∞)

2) Возрастает

3) Ограничена снизу, не ограничена сверху

4) y наим = 0, у наиб не существует

5) Непрерывна

6) E(f) = [0; +∞)

ü Функция y =

График функции – объединение двух лучей: y = x, x ≥ 0 и y = -x, x ≤ 0

Свойства функции y =

1) D(f) = (-∞; +∞)

2) Убывает на луче (-∞; 0], возрастает на луче [0; +∞)

3) Ограничена снизу, не ограничена сверху

4) y наим = 0, у наиб не существует

5) Непрерывна

6) E(f) = [0; +∞)

 

y = xⁿ (n = 3, 5, 7, 9…)

График функции – кубическая парабола (при n=3)

Свойства функции

1)

D(f) = (-∞; +∞)

2) Возрастает

3) Не ограничена ни снизу, ни сверху

4) Нет ни наименьшего, ни наибольшего значений

5) Непрерывна

6) E(f) = (-∞; +∞)

Преобразования графика функции y = f(x)

1) y = f(x) + a

Сдвиг вверх на а единиц, если a > 0

Cдвиг вниз, если a < 0

2) y = f(x + a)

Сдвиг влево на а единиц, если a > 0

Сдвиг вправо, если a < 0

3) - y = f(x)

Зеркальное отражение относительно Ох

4) y = f(-x)

Зеркальное отражение относительно Оу

5) y = a·f(x)

Растяжение вдоль Оу, если a > 1

Растяжение вдоль Ох, если 0 < a < 1

6) y = f(|x|)

Для x ≥ 0, y = f(x)

Для x < 0 – преобразование симметрии относительно Oy графика y = f(x), для x ≥ 0 симметричные части графика из правой полуплоскости в левую.

7) y = |f(x)|

Для f(x) ≥ 0, |f(x)| = f(x)

Для f(x) < 0, |f(x)| = -f(x)

Симметричное отображение части графика из нижней полуплоскости в верхнюю относительно Ox.

poisk-ru.ru

Функция y=x^n

Определение:

Функцию, заданную формулой , называют степенной функцией с натуральным показателем, где x - независимая переменная, а n - натуральное число.

Например:

Существуют два случая степенной функции: с чётным показателем и с нечётным показателем.

Рассмотрим пример: найти на рисунке степенные функции с чётным показателем и с нечётным показателем.

С чётным показателем:

С нечётным показателем:

Определение:

Областью определения любой степенной функции с натуральным показателем является множество всех действительных чисел.

Рассмотрим случай, когда n - чётное число. График выглядит так:

Опишем свойства этой функции:

1.     Если x=0, то y=0.

2.     Если x≠0, то y>0, т.к. чётная степень как положительного, так и

отрицательного числа положительна.

3.     Противоположным значениям аргумента соответствуют равные значения функции.

4.     Функция возрастает и убывает на промежутке:

5.     При любых значения аргумента функция принимает неотрицательные значения. Областью значений является:

Рассмотрим случай, когда n - нечётное число (n>1).

График выглядит так:

Опишем свойства этой функции:

1.     Если x=0, то y=0. Ноль в любой степени равен нулю.

Если x>0, то y>0.

Если x<0, то y<0.

2.     Нечётная степень отрицательного числа отрицательна.

3.     Противоположным значениям аргумента соответствуют противоположные значения функции.

4.     Функция возрастает на всей области определения, принимая любые значения.

5.     Областью значений является:

Рассмотрим пример: сравнить значения выражений:

Показатель степени у обоих выражений одинаковые. Рассмотрим график степенной функции с нечётным показателем:

На рисунке изображен график степенной функции с нечётным показателем, функция возрастает на всей области определения. В данном случае при любых значениях аргумента из множества всех действительных чисел, т.е. большему значению аргумента соответствует большее значение функции.

Рассмотрим пример: сравнить значения выражений:

Показатель степени у обоих выражений нечётный, т.е большему значению аргумента соответствует большее значение функции.

Рассмотрим пример: сравнить значения выражений:

Рассмотрим график:

Показатель степени у обоих выражений чётный, т.е. большему значению аргумента соответствует меньшее значение функции.

Пример.

Сравнить значения выражений:

Данные значения принадлежат промежутку возрастания, то есть большему значению аргумента соответствует большее значение функции.

Пример.

Определить, принадлежат ли графику функции  точки А(2,16), В(3,9), С(-1,1).

Точка А.

Значит, точка А принадлежит графику функции.

Точка Б.

Значит, точка Б не принадлежит графику функции.

Точка С.

Значит, точка С принадлежит графику функции.

videouroki.net

повторение. 11 класс. Алгебра. Показательная функция.

data-ad-client="ca-pub-8602906481123293"data-ad-slot="8834522701"data-ad-format="auto">
  • Функцию вида y=ax, где а>0, a≠1, х – любое число, называют показательной функцией.
  • Область определения показательной функции: D (y)=R – множество всех действительных чисел.
  • Область значений показательной функции: E (y)=R+ - множество всех положительных чисел.
  • Показательная функция  y=ax возрастает при a>1.
  • Показательная функция y=ax убывает при 0<a<1.

Справедливы все свойства степенной функции:

  • а0=1  Любое число (кроме нуля) в нулевой степени равно единице.
  •  а1=а  Любое число в первой степени равно самому себе.
  •  ax∙ay=ax+y   При умножении степеней с одинаковыми основаниями основание оставляют прежним, а показатели складывают.
  •  ax:ay=ax- y  При делении степеней с одинаковыми основаниями основание оставляют прежним, а из показателя степени делимого вычитают показатель степени делителя.
  • (ax)y=axy   При возведении степени в степень основание оставляют прежним, а показатели перемножают
  •  (a∙b)x=ax∙by   При возведении произведения в степень возводят в эту степень каждый из множителей.
  • (a/b)x=ax/by  При возведении дроби в степень возводят в эту степень и числитель и знаменатель дроби.
  •   а-х=1/ax
  •  (a/b)-x=(b/a)x.

Примеры.

1) Построить график функции y=2x. Найдем значения функции

при х=0, х=±1, х=±2, х=±3.

x=0, y=20=1;                   Точка А.

x=1, y=21=2;                   Точка В.

x=2, y=22=4;                   Точка С.

x=3, y=23=8;                   Точка D.              

x=-1, y=2-1=1/2=0,5;       Точка K.

x=-2, y=2-2=1/4=0,25;     Точка M.

x=-3, y=2-3=1/8=0,125;   Точка N.

Большему  значению аргумента х соответствует и большее значение функции у. Функция y=2x возрастает на всей области определения D (y)=R, так как основание функции 2>1.

2) Построить график функции y=(1/2)x. Найдем значения функции

при х=0, х=±1, х=±2, х=±3.

x=0, y=(½)0=1;                  Точка A.

x=1, y=(½)1=½=0,5;          Точка B.

x=2, y=(½)2=¼=0,25;        Точка C.

x=3, y=(½)3=1/8=0,125;    Точка D.

x=-1, y=(½)-1=21=2;          Точка K.

x=-2, y=(½)-2=22=4;          Точка M.

x=-3, y=(½)-3=23=8;          Точка N.

 

Большему значению аргумента х соответствует меньшее значение функции y. Функция y=(1/2)x убывает на всей своей области определения: D (y)=R, так как основание функции  0<(1/2)<1.

3) В одной координатной плоскости построить графики функций: 

y=2x, y=3x, y=5x, y=10x. Сделать выводы.

График функции у=2х мы уже строили, графики остальных функций строим аналогично, причем, достаточно будет найти значения функций при х=0 и при х=±1.

Переменная х может принимать любое значение (D (y)=R), при этом значение у всегда будет больше нуля  (E (y)=R+).

Графики всех данных функций пересекают ось Оу в точке (0; 1), так как любое число в нулевой степени равно единице; с осью Ох графики не пересекаются, так как положительное число в любой степени не может быть равным нулю. Чем больше основание а (если a>1) показательной функции у=ах, тем ближе расположена кривая к оси Оу.

Все  данные функции являются возрастающими, так как большему значению аргумента соответствует и большее значение функции.

 

4) В одной координатной плоскости построить графики функций:

y=(1/2)x, y=(1/3)x, y=(1/5)x, y=(1/10)x. Сделать выводы.

Смотрите построение графика функции y=(1/2)x выше, графики остальных функций строим аналогично, вычислив их значения при х=0 и при х=±1.

Переменная х может принимать любое значение: D (y)=R, при этом область значений функции: E (y)=R+.

Графики всех данных функций пересекают ось Оу в точке (0; 1), так как любое число в нулевой степени равно единице; с осью Ох графики не пересекаются, так как положительное число в любой степени не может быть равным нулю.

Чем меньше основание а (при 0<a<1) показательной функции у=ах, тем ближе расположена кривая к оси Оу.

Все  эти функции являются убывающими, так как большему значению аргумента соответствует меньшее значение функции.

Решить графически уравнения:

1) 3x=4-x.

В одной координатной плоскости построим графики функций: у=3х и у=4-х.

 

Графики пересеклись в точке А(1; 3).

 

Ответ: 1.

 

 

 

 

2) 0,5х=х+3.

 

В одной координатной плоскости строим графики функций: у=0,5х

(y=(1/2)x )

 и у=х+3.

Графики пересеклись в точке В(-1; 2).

Ответ: -1.

 

 

Найти область значений функции: 1) y=-2x; 2) y=(1/3)x+1; 3) y=3x+1-5.

Решение.

 1) y=-2x 

Область значений показательной функции y=2x – все положительные числа, т.е.

0<2x<+∞. Значит, умножая каждую часть двойного неравенства на (-1), получаем:

— ∞<-2x<0.

Ответ: Е(у)=(-∞; 0).

 2) y=(1/3)x+1;

0<(1/3)x<+∞, тогда, прибавляя ко всем частям двойного неравенства число 1, получаем:

0+1<(1/3)x+1<+∞+1;

1<(1/3)x+1<+∞.

Ответ: Е(у)=(1; +∞).

 3) y=3x+1-5.

Запишем функцию в виде: у=3х∙3-5.

0<3x<+∞;   умножаем все части двойного неравенства на 3:

0∙3<3x∙3<(+∞)∙3;

0<3x∙3<+∞;  из всех частей двойного неравенства вычитаем 5:

0-5<3x∙3-5<+∞-5;

— 5<3x∙3-5<+∞.

Ответ: Е(у)=(-5; +∞).

Смотрите Карту сайта, и Вы найдете нужные Вам темы!

 

Запись имеет метки: Показательная функция

www.mathematics-repetition.com



О сайте

Онлайн-журнал "Автобайки" - первое на постсоветском пространстве издание, призванное осветить проблемы радовых автолюбителей с привлечение экспертов в области автомобилестроения, автоюристов, автомехаников. Вопросы и пожелания о работе сайта принимаются по адресу: Онлайн-журнал "Автобайки"