Площадь треугольника через площадь описанной окружности. Формула площадь вписанного треугольника в окружность формула


как найти круг, вычисление площади и радиуса

В современном машиностроении используется масса элементов и запчастей, которые имеют в своей структуре как внешние окружности, так и внутренние. Самым ярким примером могут служить корпус подшипника, детали моторов, узлы ступицы и многое другое. При их изготовлении применяются не только высокотехнологичные приспособления, но и знания из геометрии, в частности информация об окружностях треугольника. Более детально с подобным знаниями познакомимся ниже.

...

Вконтакте

Facebook

Twitter

Google+

Мой мир

Какая окружность вписана, а какая описана

Прежде всего вспомним, что окружностью называется бесконечное множество точек, удаленных на одинаковом расстоянии от центра. Если внутри многоугольника допускается построить окружность, которая с каждой стороной будет иметь только одну общую точку пересечения, то она будет называться вписанной. Описанной окружностью (не круг, это разные понятия) называется такое геометрическое место точек, при котором у построенной фигуры с заданным многоугольником общими точками будут только вершины многоугольника. Ознакомимся с этими двумя понятиями на более наглядном примере (см. рис 1.).

Рисунок 1. Вписанная и описанная окружности треугольника

На изображении построены две фигуры большого и малого диаметров, центры которых находятся G и I. Окружность большего значения называется описанной окр-тью Δ ABC, а малого – наоборот, вписанной в Δ ABC.

Для того чтобы описать вокруг треугольника окр-ть, требуется провести через середину каждой стороны перпендикулярную прямую (т.е. под углом 90°) – это точка пересечения, она играет ключевую роль. Именно она будет представлять собой центр описанной окружности. Перед тем как найти окружность, ее центр в треугольнике, требуется построить для каждого угла биссектрису, после чего выделить точку пересечения прямых. Она в свою очередь будет центром вписанной окр-ти, а ее радиус при любых условиях будет перпендикулярен любой из сторон.

На вопрос:«Какое количество окружностей вписанных может быть для многоугольника с тремя углами?» ответим сразу, что в любой треугольник можно вписать окружность и притом только одну. Потому что существует только одна точка пересечения всех биссектрис и одна точка пересечения перпендикуляров, исходящих из середин сторон.

Свойство окружности, которой принадлежат вершины треугольника

Описанная окружность, которая зависит от длин сторон при основании, имеет свои свойства. Укажем свойства описанной окружности:

  1. Центр описанной окружности для прямоугольного треугольника находится на середине гипотенузы, у острого – внутри самого треугольника, а для тупоугольного – за ее пределами.
  2. Диаметр любой описанной окр-сти равен половине отношения стороны и синуса угла, который принадлежит ей, в виде формулы можно представить следующим образом:
  3. Зная радиус описанной окружности и значения углов, можно найти значение площади, не прибегая к использованию длин сторон, по следующей формуле:

Для того чтобы более наглядно понять принцип описанной окружности, решим простую задачу. Допустим, что дан треугольник Δ ABC, стороны которого равны 10, 15 и 8,5 см. Радиус описанной окружности около треугольника (FB) составляет 7,9 см. Найти значение градусной меры каждого угла и через них площадь треугольника.

Рисунок 2. Поиск радиуса окружности через отношение сторон и синусов углов

Решение: опираясь на ранее указанную теорему синусов, найдем значение синуса каждого угла в отдельности. По условию известно, что сторона АВ равна 10 см. Вычислим значение С:

Используя значения таблицы Брадиса, узнаем, что градусная мера угла С равна 39°. Таким же методом найдем и остальные меры углов:

Откуда узнаем, что CAB = 33°, а ABC = 108°. Теперь, зная значения синусов каждого из углов и радиус, найдем площадь, подставляя найденные значения:

Ответ: площадь треугольника равна 40,31 см², а углы равны соответственно 33°, 108° и 39°.

Важно! Решая задачи подобного плана, будет нелишним всегда иметь таблицы Брадиса либо соответствующее приложение на смартфоне, так как вручную процесс может затянуться на длительное время. Также для большей экономии времени не требуется обязательно строить все три середины перпендикуляра либо три биссектрисы. Любая третья из них всегда будет пересекаться в точке пересечения первых двух. А для ортодоксального построения обычно третью дорисовывают. Может, это неправильно в вопросе алгоритма, но на ЕГЭ или других экзаменах это здорово экономит время.

Исчисление радиуса вписанной окружности

Все точки окружности одинаково удалены от ее центра на одинаковом расстоянии. Длину этого отрезка (от и до) называют радиусом. В зависимости от того, какую окр-ть мы имеем, различают два вида – внутренний и внешний. Каждый из них вычисляется по собственной формуле и имеет прямое отношение к вычислению таких параметров, как:

  • площадь;
  • градусная мера каждого угла;
  • длины сторон и периметр.

Рисунок 3. Расположение вписанной окружности внутри треугольника

Вычислить длину расстояния от центра до точки соприкосновения с любой из сторон можно такими способами: через стороны, высоты, боковые стороны и углы (для равнобокого треугольника).

Использование полупериметра

Полупериметром называется половина суммы длин всех сторон. Такой способ считается самым популярным и универсальным, потому как независимо от того, какой тип треугольника дан по условию, он подходит для всех. Порядок вычисления имеет следующий вид:

Если дан «правильный»

Одним из малых преимуществ «идеального» треугольника является то, что вписанная и описанная окружности имеют центр в одной точке. Это удобно при построении фигур. Однако в 80% случаев ответ получается «некрасивым». Тут имеется ввиду, что очень редко радиус вписанной окр-ти будет целым натуральным числом, скорее наоборот. Для упрощенного исчисления используется формула радиуса вписанной окружности в треугольник:

Если боковины одинаковой длины

Одним из подтипов задач на гос. экзаменах будет нахождение радиуса вписанной окружности треугольника, две стороны которого равны между собой, а третья нет. В таком случае рекомендуем использовать этот алгоритм, который даст ощутимую экономию времени на поиск диаметра вписанной окр-ти. Радиус вписанной окружности в треугольник с равными «боковыми» вычисляется по формуле:

Более наглядное применение указанных формул продемонстрируем на следующей задаче. Пускай имеем треугольник (Δ HJI), в который вписана окр-ть в точке K. Длина стороны HJ = 16 см, JI = 9,5 см и сторона HI равна 19 см (рисунок 4). Найти радиус вписанной окр-ти, зная стороны.

Рисунок 4. Поиск значения радиуса вписанной окружности

Решение: для нахождения радиуса вписанной окр-ти найдем полупериметр:

Отсюда, зная механизм вычисления, узнаем следующее значение. Для этого понадобятся длины каждой из сторон (дано по условию), а также половину периметра, получается:

Отсюда следует, что искомый радиус равен 3,63 см. Согласно условию, все стороны равны, тогда искомый радиус будет равен:

При условии, если многоугольник равнобокий (например, i = h = 10 см, j = 8 см), диаметр внутренней окр-ти с центром в точке K будет равен:

В условии задачи может даваться треугольник с углом 90°, в таком случае запоминать формулу нет необходимости. Гипотенуза треугольника будет равна диаметру. Более наглядно это выглядит так:

Важно! Если задана задача на поиск внутреннего радиуса, не рекомендуем проводить вычисления через значения синусов и косинусов углов, табличное значение которых точно не известно. В случае, если иначе узнать длину невозможно, не пытайтесь «вытащить» значение из-под корня. В 40% задач полученное значение будет трансцендентным (т.е. бесконечным), а комиссия может не засчитать ответ (даже если он будет правильным) из-за его неточности или неправильной формы подачи. Особое внимание уделите тому, как может видоизменяться формула радиуса описанной окружности треугольника в зависимости от предложенных данных. Такие «заготовки» позволяют заранее «видеть» сценарий решения задачи и выбрать наиболее экономное решение.

Радиус внутренней окружности и площадь

Для того чтобы вычислить площадь треугольника, вписанного в окружность, используют лишь радиус и длины сторон многоугольника:

Если в условии задачи напрямую не дано значение радиуса, а только площадь, то указанная формула площади трансформируется в следующую:

Рассмотрим действие последней формулы на более конкретном примере. Предположим, что дан треугольник, в который вписана окр-ть. Площадь окр-ти составляет 4π, а стороны равны соответственно 4, 5 и 6 см. Вычислим площадь заданного многоугольника при помощи вычисления полупериметра.

Используя вышеуказанный алгоритм, вычислим площадь треугольника через радиус вписанной окружности:

В силу того, что в любой треугольник можно вписать окружность, число вариаций нахождения площади значительно увеличивается. Т.е. поиск площади треугольника, включает в себя обязательное знание длины каждой стороны, а также значение радиуса.

Треугольник, вписанный в окружность геометрия 7 класс

Прямоугольные треугольники, вписанные в окружность

Вывод

Из указанных формул можно убедиться, что сложность любой задачи с использованием вписанной и описанной окружностей заключается только в дополнительных действия по поиску требуемых значений. Задачи подобного типа требуют только досконально понимания сути формул, а также рациональности их применения. Из практики решения отметим, что в будущем центр описанной окружности будет фигурировать и в дальнейших темах геометрии, поэтому запускать ее не следует. В противном случае решение может затянуться с использованием лишних ходов и логических выводов.

uchim.guru

Площадь треугольника через радиус вписанной окружности

Как найти площадь треугольника через радиус вписанной окружности?

Площадь треугольника равна произведению радиуса вписанной в этот треугольник окружности на на его полупериметр.

Формула для нахождения площади треугольника через радиус вписанной окружности:

   

   

 

 

Дано:

∆ ABC,

окружность (O; r) — вписанная,

AB=c, BC=a, AC=b,

   

Доказать:

   

Доказательство:

 

 

Рассмотрим треугольник AOC.

   

(как радиус, проведенный в точку касания).

Следовательно, OF — высота треугольника AOC.

По формуле

   

   

 

 

Аналогично найдем

площади

треугольников

AOB и BOC:

 

   

   

Так как площадь треугольника ABC равна сумме площадей этих треугольников, то

   

   

Что и требовалось доказать.

Если требуется найти площадь треугольника через его периметр, формулу записывают так:

   

где P — периметр треугольника, r — радиус вписанной в этот треугольник окружности.

www.treugolniki.ru

Площадь треугольника через радиус вписанной окружности

Довольно часто дается задача, в которой в треугольник вписана окружность. В этом случае можно применяется формула площади треугольника через радиус вписанной окружности.Чтобы найти площадь треугольника потребуются длины всех сторон и радиус окружности. Радиус – это половина диаметра. То есть, если по условиям дана длина диаметра, ее необходимо просто поделить пополам.Для начала просчитываем полупериметр треугольника. Он находится по фомуле: Зная полупериметр и длину радиуса, вычисляем площадь по формуле

Пример расчета площади треугольника через радиус вписанной окружности: Дан треугольник со сторонами a = 2 см, b = 3 см, c = 4 см, в который вписана окружность с радиусом 2 см. Для начала находим полупериметр: Далее подставляем данные в следующую формулу: Площадь треугольника равняется 9 кв.см Иногда требуется найти площадь треугольника, зная площадь окружности. В этом случае потребуется сначала вычислить радиус окружности. Площадь круга равняется: где число Пи  и является постоянной величиной. Отсюда выводим формулу расчета радиуса: Теперь можно использовать формулу площади треугольника через площадь вписанной окружности: Рассмотрим пример расчета площади треугольника через площадь вписанной окружности. Дан треугольник со сторонами a = 2 см., b = 3 см., c = 4 см. Площадь вписанной окружности = 12,5 см. Подставляем данные в формулу: Площадь треугольника равна 9 кв. см

Таким образом, зная площадь окружности и длины всех сторон, можно прочитать площадь треугольника.

2mb.ru

Площадь треугольника

Площадь треугольника, формулы и калькулятор для вычисления площади в режиме онлайн. Приведены общие формулы для всех типов треугольников, частные случаи для равносторонних, равнобедренных и прямоугольных треугольников.

Для всех треугольников

1

Площадь треугольника по основанию и высоте

Площадь треугольника равна половине произведения основания треугольника на высоту, опущенную на это основание: . Основанием треугольника может быть выбрана любая из сторон треугольника.

Вычислить площадь:

Сторона a

Высота h

2

Площадь треугольника по двум сторонам и углу между ними

Площадь треугольника равна половине произведения двух любых его сторон на синус угла между этими сторонами: . Угол α между сторонами может быть любым: тупым, острым, прямым.

Вычислить площадь:

Сторона a

Сторона b

Угол α° между сторонами a и b

3

Площадь треугольника по радиусу вписанной окружности и трем сторонам

Площадь треугольника равна половине суммы всех трех сторон треугольника умноженной на радиус вписанной окружности.

или по-другому можно сказать: "Площадь треугольника равна половине периметра треугольника, умноженного на радиус вписанной окружности."

Вычислить площадь:

Сторона a

Сторона b

Сторона c

Радиус r вписанной окружности

4

Площадь треугольника по радиусу описанной окружности и трем сторонам

Площадь треугольника равна произведению трех сторон треугольника, деленных на четыре радиуса описанной окружности:

Вычислить площадь:

Сторона a

Сторона b

Сторона c

Радиус R описанной окружности

5

Площадь треугольника по формуле Герона

Если известны все три стороны треугольника, можно вычислить его площадь используя формулу Герона: , где p – это полупериметр треугольника, вычисляемый по формуле

Вычислить площадь:

Сторона a

Сторона b

Сторона c

Полупериметр:

Для равнобедренных треугольников

6

Площадь равнобедренного треугольника по боковым сторонам и углу между ними

Вычислить площадь:

Боковая сторона a (a = b)

Угол α° между боковыми сторонами

7

Площадь равнобедренного треугольника по боковым сторонам и углу между ними

Вычислить площадь:

Боковая сторона a (a = b)

Основание треугольника c

Угол β° между основанием и стороной

8

Площадь равнобедренного треугольника по основанию и углу между боковыми сторонами

Вычислить площадь:

Основание треугольника c

Угол α° между боковыми сторонами

Для равносторонних треугольников

9

Площадь равностороннего треугольника по стороне

Вычислить площадь:

Сторона a (a = b = c)

10

Площадь равностороннего треугольника по высоте

Вычислить площадь:

Высота h

11

Площадь равностороннего треугольника по радиусу вписанной окружности

Вычислить площадь:

Радиус r вписанной окружности

12

Площадь равностороннего треугольника по радиусу описанной окружности

Вычислить площадь:

Радиус R описанной окружности

Для прямоугольных треугольников

13

Площадь прямоугольного треугольника по двум катетам

Вычислить площадь:

Катет a

Катет b

14

Площадь прямоугольного треугольника по отрезкам, на которые делит гипотенузу вписанная окружность

Вычислить площадь:

Отрезокd

Отрезок e

15

Площадь прямоугольного треугольника по формуле Герона

Формула Герона для прямоугольного треугольника , где p – это полупериметр треугольника, вычисляемый по формуле

Вычислить площадь:

Сторона a

Сторона b

Сторона c

Полупериметр:

Определения

Треугольник – это геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Отрезки называют сторонами треугольника, а точки – вершинами треугольника.

Площадь – это численная характеристика, характеризующая размер плоскости, ограниченной замкнутой геометрической фигурой.

Площадь измеряется в единицах измерения в квадрате: км2, м2, см2, мм2 и т.д.

В зависимости от вида треугольника и его известных исходных данных, площадь треугольника можно вычислить:

Для всех треугольников

  1. по основанию и высоте
  2. по двум сторонам и углу между ними
  3. по радиусу вписанной окружности и трем сторонам
  4. по радиусу описанной окружности и трем сторонам
  5. по формуле Герона

Для равнобедренных треугольников

  1. по боковым сторонам и углу между ними
  2. по боковой стороне, основанию и углу между боковыми сторонами и основанием
  3. по основанию и углу между боковыми сторонами

Для равносторонних треугольников

  1. по стороне
  2. по высоте
  3. по радиусу вписанной окружности
  4. по радиусу описанной окружности

Для прямоугольных треугольников

  1. по двум катетам
  2. по отрезкам, на которые делит гипотенузу вписанная окружность
  3. по формуле Герона

doza.pro

Площадь треугольника через площадь описанной окружности

Треугольник называется вписанным, если все его вершины лежат на окружности. В этом случае окружность называется описанной вокруг треугольника. Расстояние от ее центра до каждой вершины треугольника будет одинаковым и равным радиусу этой окружности. Вокруг любого треугольника можно описать окружность, но только одну.

Центр описанной окружности будет лежать в точке пересечения серединных перпендикуляров, проведенных к каждой из сторон треугольника. Если окружность описана вокруг прямоугольного треугольника, то ее центр будет лежать на середине гипотенузы. Для любого треугольника, вокруг которого описана окружность действует формула площади треугольника через радиус описанной окружности:

в которой a,b,c – стороны треугольника, а R – радиус описанной окружности.

Пример расчета площади треугольника через радиус описанной окружности: Пусть дан треугольник со сторонами a = 5 см, b = 6 см, c = 4 см. Вокруг него описана окружность с R = 3 см. найдите площадь. Имея все требуемые данные, просто подставляем значения в формулу: Площадь треугольника будет равна 10 кв. см

Довольно часто по условиям можно встретить данную площадь описанной окружности, которую необходимо использовать для нахождения площади вписанного треугольника. Формула площади треугольника через площадь описанной окружности находится после вычисления радиуса. Его можно вычислить несколькими способами. Для начала рассмотрим формулу площади окружности: Преобразовав эту формулу, мы получим, что радиус:Используя эту формулу, мы получаем, что зная площадь описанной окружности, можно найти площадь треугольника следующим способом:

Зная все три стороны заданного треугольника можно применить для нахождения площади формулу Герона. Из нее же можно найти и радиус описанной окружности. То есть если в условиях даны все стороны треугольника и требуется поиск площади через радиус описанной окружности, мы сначала должны вычислить его по формуле:То есть, зная длины всех сторон треугольника, мы можем найти площадь треугольника через радиус описанной окружности.

2mb.ru

Формулы площадей всех основных фигур

1. Формула площади равнобедренной трапеции через стороны и угол

b - верхнее основание

a - нижнее основание

c - равные боковые стороны

α - угол при нижнем основании

 

Формула площади равнобедренной трапеции через стороны, (S):

 

Формула площади равнобедренной трапеции через стороны и угол, (S):

 

 

2. Формула площади равнобокой трапеции через радиус вписанной окружности

R - радиус вписанной окружности

D - диаметр вписанной окружности

O - центр вписанной окружности

H - высота трапеции

α, β - углы трапеции

 

Формула площади равнобокой трапеции через радиус вписанной окружности, (S):

СПРАВЕДЛИВО, для вписанной окружности в равнобокую трапецию:

 

 

3. Формула площади равнобедренной трапеции через диагонали и угол между ними

d - диагональ трапеции

α, β - углы между диагоналями

 

Формула площади равнобедренной трапеции через диагонали и угол между ними, (S):

 

 

4. Формула площади равнобедренной трапеции через среднюю линию, боковую сторону и угол при основании

m - средняя линия трапеции

c - боковая сторона

α, β - углы при основании

 

Формула площади равнобедренной трапеции через среднюю линию, боковую сторону и угол при основании, (S ):

 

 

5. Формула площади равнобедренной трапеции через основания и высоту

b - верхнее основание

a - нижнее основание

h - высота трапеции

 

Формула площади равнобедренной трапеции через основания и высоту, (S):

 

www-formula.ru

Площадь треугольника через радиус описанной окружности

Как найти площадь треугольника через радиус описанной окружности?

Площадь треугольника равна частному от деления произведения сторон треугольника на четыре радиуса описанной около треугольника окружности.

 

Формула для нахождения площади треугольника через радиус описанной окружности:

   

Дано: ∆ ABC,

окружность (O; R) — описанная,

AB=c, BC=a, AC=b.

Доказать:

   

Доказательство:

 

1) Обозначим ∠A=α.

Площадь треугольника ABC

по двум сторонам и углу между ними

равна

   

2) По следствию из теоремы синусов,

   

Выразим из этой формулы синус альфа

   

и подставим полученное выражение в первую формулу

   

Что и требовалось доказать.

Найти площадь треугольника

www.treugolniki.ru



О сайте

Онлайн-журнал "Автобайки" - первое на постсоветском пространстве издание, призванное осветить проблемы радовых автолюбителей с привлечение экспертов в области автомобилестроения, автоюристов, автомехаников. Вопросы и пожелания о работе сайта принимаются по адресу: Онлайн-журнал "Автобайки"