Об отдельных случаях вычисления дискриминанта. Формула нулевого дискриминанта

БЕСПЛАТНО ответим на Ваши вопросы
По лишению прав, ДТП, страховом возмещении, выезде на встречную полосу и пр. Ежедневно с 9.00 до 21.00
Москва и МО +7 (499) 938-51-97
С-Петербург и ЛО +7 (812) 467-32-86
Бесплатный звонок по России 8-800-350-23-69 доб.418

Дискриминант квадратного уравнения. Формулы дискриминанта

Дискриминант квадратного уравнения – это выражение, находящееся под корнем в формуле нахождения корней квадратного уравнения. Дискриминант обозначается латинской буквой D.

Все формулы нахождения корней квадратных уравнений можно записать короче с помощью дискриминанта:

Дискриминант позволяет определить имеет ли уравнение корни и сколько их, не решая само уравнение:

  1. Если дискриминант больше нуля, то уравнение имеет два корня.
  2. Если дискриминант равен нулю, то уравнение имеет один корень.
  3. Если дискриминант меньше нуля, то уравнение не имеет корней.

Несмотря на то, что есть несколько формул дискриминанта, чаще всего используют первую:

D = b2 - 4ac

так как она относится к формуле:

которая является универсальной формулой нахождения корней квадратного уравнения. Данная формула подходит даже для неполных квадратных уравнений.

Решение квадратных уравнений через дискриминант

Для решения квадратного уравнения по формуле, можно сначала вычислить дискриминант и сравнить его с нулём. В зависимости от результата либо искать корни по формуле, либо сделать вывод что корней нет.

Пример 1. Решить уравнение:

3x2 - 4x + 2 = 0

Определим чему равны коэффициенты:

a = 3, b = -4, c = 2

Найдём дискриминант:

D = b2 - 4ac = (-4)2 - 4 · 3 · 2 = 16 - 24 = -8, D < 0

Ответ: корней нет.

Пример 2.

x2 - 6x + 9 = 0

Определим чему равны коэффициенты:

a = 1, b = -6, c = 9

Найдём дискриминант:

D = b2 - 4ac = (-6)2 - 4 · 1 · 9 = 36 - 36 = 0, D = 0

Уравнение имеет всего один корень:

Ответ: 3.

Пример 3.

x2 - 4x - 5 = 0

Определим чему равны коэффициенты:

a = 1, b = -4, c = -5

Найдём дискриминант:

D = b2 - 4ac = (-4)2 - 4 · 1 · (-5) = 16 + 20 = 36, D > 0

Уравнение имеет два корня:

x1 = (4 + 6) : 2 = 5,   x2 = (4 - 6) : 2 = -1

Ответ: 5, -1.

naobumium.info

Квадратное уравнение. Решение квадратных уравнений. Дискриминант. Формула дискриминанта. ( Дискриминат на 4 и на 1). Теорема Виета. 3 способа.

Решение квадратных уравнений. Дискриминант. Формула дискриминанта. Теорема Виета.

Квадратным уравнением называется уравнение вида:

                 ,

гдеx - переменная,a,b,c - постоянные (числовые) коэффициенты.

В общем случае решение квадратных уравнений сводится к нахождению дискриминанта

Формула дискриминанта: .
О корнях квадратного уравнения можно судить по знаку дискриминанта (D) :
  • D>0 - уравнение имеет 2 различных вещественных корня
  • D=0 - уравнение имеет 2 совпадающих вещественных корня
  • D<0 - уравнение имеет 2 мнимых корня (для непродвинутых пользователей - корней не имеет)

В общем случае корни уравнения равны:

                 .

Очевидно, в случае с нулевым дискриминантом, оба корня равны

                 .

Если коэффициент при х четный, то имеет смысл вычислять не дискриминант, а четверть дискриминанта:

                

В таком случае корни уравнения вычисляются по формуле:

                

Теорема Виета.

Приведенным квадратным уравнением называется уравнение вида

                ,

то есть квадратное уравнение с единичным коэффициентом при старшем члене.

В этом случае целесообразно применять теорему Виета, которая позволяет получить относительно корней уравнения следующую систему уравнений:

                 .

Следует заметить, что любое квадратное уравнение может стать приведенным, если его поделить на коэффициент при старшем члене, то есть при х2

www.dpva.ru

подскажите формулу как найти дискриминант

Часто на практике приходиться находить корни квадратного уравнения с помощью дискриминанта. Не только школьники, но и студенты сталкиваются с вычислением дискриминанта по известной формуле. Например, в школьном курсе простейшей задачей на дискриминант является решение уравнения вида ax2+bx+c=0, которое называют квадратным. В высшем учебном заведении к решению квадратного уравнения приводит, например, решение дифференциального уравнения y''+2y'+y=0. Постановка задачи. Найти действительные корни уравнения ax2+bx+c=0 с помощью дискриминанта. Разложить многочлен вида ax2+bx+c на множители. Решение задачи. Формула для вычисления дискриминанта D = b2-4ac. Формулы для нахождения корней x1,2 = -b±D2a. Если дискриминант равен нулю, то x1 = x2. Если меньше нуля, то действительных корней нет. Если больше нуля, то x1&#8800;x2, x1, x2&#8712;&#8477;. Если корни x1 и x2 известны (найдены) , то многочлен ax2+bx+c можно разложить на множители по формуле ax2+bx+c = a(x-x1)(x-x2). У квадратного уравнения есть комплексные корни, если его дискриминант меньше нуля. Нашей задачей является нахождение только действительных корней. * - введите коэффициенты a,b,c перед неизвестным в выражении ax2+bx+c с учётом их знака. Для примера введены коэффициенты выражения x2-2x+4=0. Ввод коэффициентов осуществляется через пробел (не разделяйте двумя и более пробелами) . Максимальная длина коэффициента в символах равна 6, например, коэффициент -1234567 будет заменён на -12345. ** - введите имя неизвестного. По умолчанию введено икс, но можно вводить любые выражения до 10 символов. Например, если будет введено cosx, то это будет означать, что мы ищем значения косинуса из уравнения cos2x-2cosx+4=0.

Решение квадратного уравнения

Д= в (в квадрате) -4*а*с....

touch.otvet.mail.ru

Нахождение дискриминанта, формула, сравнение с нулём

Дискриминант — многозначный термин. В данной статье речь пойдёт о дискриминанте многочлена, который позволяет определить, есть ли у данного многочлена действительные решения. Формула для квадратного многочлена встречается в школьном курсе алгебры и анализа. Как найти дискриминант? Что нужно для решения уравнения?

Квадратный многочлен, как искать его корни

Квадратным многочленом или уравнением второй степени называется i * w ^ 2 + j * w + k равный 0, где «i» и «j» — первый и второй коэффициент соответственно, «k» — константа, которую иногда именуют «свободным членом», а «w» — переменная. Его корнями окажутся все значения переменной, при которых оно превращается в тождество. Такое равенство допустимо переписать, как произведение i, (w — w1) и (w — w2) равное 0. В этом случае очевидно, что если коэффициент «i» не обращается в ноль, то функция в левой части станет нулевой только в случае, если x принимает значение w1 или w2. Эти значения являются результатом приравнивания многочлена к нулю.

Для нахождения значения переменной, при котором квадратный многочлен обращается в ноль, используется вспомогательная конструкция, построенная на его коэффициентах и названная дискриминантом. Эта конструкция рассчитывается согласно формуле D равняется j * j — 4 * i * k. Зачем она используется?

  1. Она говорит, имеются ли действительные результаты.
  2. Она помогает их высчитать.

Как это значение показывает наличие вещественных корней:

  • Если оно положительное, то можно найти два корня в области действительных чисел.
  • Если дискриминант равен нулю, то оба решения совпадают. Можно сказать, что есть всего одно решение, и оно из области вещественных чисел.
  • Если дискриминант меньше нуля, то у многочлена отсутствуют вещественные корни.

Варианты расчётов для закрепления материала

Для суммы {7 * w ^ 2; 3 * w; 1} равной 0 рассчитываем D по формуле 3 * 3 — 4 * 7 * 1 = 9 — 28 получаем -19. Значение дискриминанта ниже нуля говорит об отсутствии результатов на действительной прямой.

Если рассмотреть 2 * w ^ 2 — 3 * w + 1 эквивалентный 0, то D рассчитывается как (-3) в квадрате за вычетом произведения чисел {4; 2; 1} и равняется 9 — 8, то есть 1. Положительное значение говорит о двух результатах на вещественной прямой.

Если взять сумму {w ^ 2; 2 * w; 1} и прировнять к 0, D рассчитается, как два в квадрате минус произведение чисел {4; 1; 1}. Это выражение упростится до 4 — 4 и обратится в ноль. Выходит, что результаты совпадают. Если внимательно вглядеться в данную формулу, то станет понятно, что это «полный квадрат». Значит, равенство можно переписать в форме (w + 1) ^ 2 = 0. Стало очевидно, что результат в этой задаче «-1». В ситуации если D равен 0, левую часть равенства всегда получится свернуть по формуле «квадрат суммы».

Использование дискриминанта в вычислении корней

Эта вспомогательная конструкция не только показывает количество вещественных решений, но и помогает их находить. Общая формула расчёта для уравнения второй степени такова:

w = (-j +/- d) / (2 * i), где d — дискриминант в степени 1/2.

Допустим, дискриминант ниже нулевой отметки, тогда d — мнимо и результаты мнимые.

D нулевой, тогда d, равный D в степени 1/2, тоже нулевой. Решение: -j / (2 * i). Снова рассматриваем 1 * w ^ 2 + 2 * w + 1 = 0, находим результаты эквивалентные -2 / (2 * 1) = -1.

Предположим, D > 0, значит, d — вещественное число, и ответ здесь распадается на две части: w1 = (-j + d) / (2 * i) и w2 = (-j — d) / (2 * i). Оба результата окажутся действительные. Взглянем на 2 * w ^ 2 — 3 * w + 1 = 0. Здесь дискриминант и d — единицы. Выходит, w1 равняется (3 + 1) делить (2 * 2) или 1, а w2 равен (3 — 1) делить на 2 * 2 или 1/2.

Результат приравнивания квадратного выражения к нулю вычисляется согласно алгоритму:

  1. Вычисление дискриминанта.
  2. Определение количества действительных решений.
  3. Вычисление d = D ^ (1/2).
  4. Нахождение результата в соответствии с формулой (-j +/- d) / (2 * i).
  5. Подстановка полученного результата в исходное равенство для проверки.

Некоторые частные случаи

В зависимости от коэффициентов решение может несколько упрощаться. Очевидно, что если коэффициент перед переменной во второй степени равен нулю, то получается линейное равенство. Когда коэффициент перед переменной в первой степени нулевой, то возможны два варианта:

  1. многочлен раскладывается в разность квадратов при отрицательном свободном члене;
  2. при положительной константе действительных решений найти нельзя.

Если свободный член нулевой, то корни будут {0; -j}

Но есть и другие частные случаи, упрощающие нахождение решения.

Приведенное уравнение второй степени

Приведенным именуют такой квадратный трёхчлен, где коэффициент перед старшим членом — единица. Для данной ситуации применима теорема Виета, гласящая, что сумма корней равняется коэффициенту при переменной в первой степени, помноженному на -1, а произведение соответствует константе «k».

Следовательно, w1 + w2 равно -j и w1 * w2 равняется k, если первый коэффициент — единица. Чтобы убедиться в правильности такого представления, можно выразить из первой формулы w2 = -j — w1 и подставить его во второе равенство w1 * (-j — w1) = k. В итоге получается исходное равенство w1 ^ 2 + j * w1 + k = 0.

Важно отметить, что i * w ^ 2 + j * w + k = 0 удастся привести путём деления на «i». Результат будет: w ^ 2 + j1 * w + k1 = 0, где j1 равно j / i и k1 равно k / i.

Взглянем на уже решенное 2 * w ^ 2 — 3 * w + 1 = 0 с результатами w1 = 1 и w2 = 1/2. Надо поделить его пополам, в итоге w ^ 2 — 3/2 * w + 1/2 = 0. Проверим, что для найденных результатов справедливы условия теоремы: 1 + 1/2 = 3/2 и 1*1/2 = 1/2.

Чётный второй множитель

Если множитель при переменной в первой степени (j) делится на 2, то удастся упростить формулу и искать решение через четверть дискриминанта D/4 = (j / 2) ^ 2 — i * k. получается w = (-j +/- d/2) / i, где d/2 = D/4 в степени 1/2.

Если i = 1, а коэффициент j — чётный, то решением будет произведение -1 и половины коэффициента при переменной w, плюс/минус корень из квадрата этой половины за вычетом константы «k». Формула: w = -j / 2 +/- (j ^ 2 / 4 — k) ^ 1/2.

Более высокий порядок дискриминанта

Рассмотренный выше дискриминант трёхчлена второй степени — это наиболее употребимый частный случай. В общем же случае дискриминант многочлена представляет собой перемноженные квадраты разностей корней этого многочлена. Следовательно, дискриминант равный нулю говорит о наличии как минимум двух кратных решений.

Рассмотрим i * w ^ 3 + j * w ^ 2 + k * w + m = 0.

D = j ^ 2 * k ^ 2 — 4 * i * k ^ 3 — 4 * i ^ 3 * k — 27 * i ^ 2 * m ^ 2 + 18 * i * j * k * m.

Допустим, дискриминант превосходит ноль. Это значит, что имеется три корня в области действительных чисел. При нулевом есть кратные решения. Если D < 0, то два корня комплексно-сопряженные, которые дают отрицательное значение при возведении в квадрат, а также один корень — вещественный.

Видео

Наше видео подробно расскажет о вычислении дискриминанта.

liveposts.ru

Решение квадратных уравнений

Квадратным уравнением называется уравнение вида , где . 

- коэффициент при  , или старший коэффициент.

- коэффициент при х, или второй коэффициент.

- свободный член.

Например, в уравнении   , , .

B уравнении   , ,

Если в квадратном уравнении  или  , то такое квадратное уравнение называется НЕПОЛНЫМ.

Неполное квадратное уравнение решается с помощью разложения на множители.

1. Если , то нужно вынести за скобки общий множитель.

Например,

Приравняем каждый множитель к нулю:

или

Ответ: {0,  }

2. Если , то нужно разложить на множители по формуле разности квадратов:

Например:

Приравниваем каждый множитель  к нулю, получаем:

или 

Коротко это уравнение решается так:

В этом месте важно не забыть знак  перед корнем!

Ответ: {}

Если  в квадратном уравнении  и  , то такое квадратное уравнение называется ПОЛНЫМ.

Полное квадратное уравнение решается с помощью нахождения ДИСКРИМИНТА.

Дискриминант квадратного уравнения  вычисляется по формуле:

.

Формулы для вычисления корней квадратного уравнения выглядят так:

В этих формулах дискриминант присутствует под знаком квадратного корня, поэтому

Eсли , то квадратное уравнение не имеет действительных корней.

Если , то квадратное уравнение имеет два различных действительных корня, которые можно найти по приведенным выше формулам.

Если ,  то квадратное уравнение имеет два совпадающих корня:

.

Иногда  говорят, что в этом случае квадратное уравнение имеет один корень.

Итак, при решении квадратного уравнения удобно пользоваться таким алгоритмом:

1. Определяем, является ли квадратное уравнение полным, или неполным.

2. Если уравнение неполное, раскладываем левую часть на множители и приравниваем каждый множитель к нулю.

3. Если уравнение полное, то

  • находим дискриминант квадратного уравнения по формуле
  • если дискриминант меньше нуля, то записываем, что квадратное уравнение не имеет действительных корней
  • если дискриминант равен нулю, то находим корни квадратного уравнения по формуле 
  • если дискриминант больше нуля, то находим корни квадратого уравнения по формулам:, 

Если коэффициент   квадратного уравнения - четное число, то есть его можно записать как , или  то для нахождения корней квадратного уравнения удобно пользоваться формулами для четного второго коэффициента:

Два полезных замечания:

1. Если для коэффициентов квадратного уравнения  выполняется равенство , то , 

2. Если для коэффициентов квадратного уравнения  выполняется равенство , то , 

Эти свойства помогают устно решать некоторые громоздкие квадратные уравнения. Например, в квадратном уравнении  сумма коэффициентов равна 0, поэтому ,  .

В уравнении выполняется равенство , поэтому ,  

Рассмотрим несколько примеров.

Решим квадратные уравнения:

1.

а) найдем дискриминант этого уравнения:

Дискриминант больше нуля, значит уравнение имеет два различных корня.

б) Тогда: , 

Ответ:   {1; 1/2}

2.  

а) Найдем дискриминант этого уравнения:

. Очевидно, что  , и даже нет необходимости вычислять его точное значение.

Ответ: уравнение не имеет действительных корней.

3. 

а) Найдем дискриминант этого уравнения:

б) Так как , уравнение имеет два совпадающих корня,

Если внимательно посмотреть на квадратный трехчлен, стоящий в левой части уравнения, то становится очевидно, то что его можно преобразовать по формуле квадрата разности к выражению

, отсюда 

Ответ: 1/4.

А теперь я предлагаю вам посмотреть видеоурок с решением квадратного уравнения:

 

И.В. Фельдман, репетитор по математике.

ege-ok.ru

Дискриминант квадратного уравнения с большими коэффициентами

Сложно встретить старшеклассника, НЕ умеющего находить корни квадратного уравнения через дискриминант.

Но, к сожалению, в отдельных случаях, получая громоздкий дискриминант,  многие начинают паниковать (без калькулятора).

А на ЕГЭ по математике, например, в задачах категории В14, вам вполне может встретиться причудливый дискриминант.

Нет безвыходных ситуаций!

На чем можно сэкономить силы при вычислении дискриминанта

 

Прежде чем разбирать примеры, вспомним все же  формулу дикриминанта для вычисления корней квадратного уравнения  

Тогда корни  уравнения находим по формуле

Надеюсь, вы помните, что удобно искать корни уравнения через дискриминант в случае, если имеем дело с полным  квадратным уравнением ( и – ненулевые).

Как решать неполные квадратные уравнения мы уже говорили.

1) Используем формулу «разность квадратов».

Допустим, нам нужно решить уравнение  

Ясно, что дискриминант следующий:

Не спешим возводить 53 в квадрат! Замечаем, что , поэтому

Корни данного уравнения, думаю, теперь каждый из вас найдет без труда…

2) Используем прием вынесения общего множителя за скобки.

Допустим, нам нужно решить уравнение (кстати, оно взято из реальной текстовой задачи из открытого банка заданий ЕГЭ по математике).

Ясно, что дискриминант следующий: 

Нет, мы не пойдем напролом!

Замечаем, что , а .

Мы можем вынести за скобку общий множитель

Корни найти – уже не проблема…

3) Формула сокращенного дискриимнанта.

Допустим, нам нужно решить уравнение

Вы знаете, что такое ? + показать

Его очень удобно применять в случае четности второго коэффициента (при x).

Вот формулы дискриминанта и корней в этом случае:

для уравнения , где – четное

Тогда корни следующие: , то есть или

Хоть на чуть-чуть, но упростили вычисления. Считаете, что неоправданно, – лишней формулой забивать голову… Выбор за вами.

4) Вместо дискриминанта – т. Виета.

Допустим, нам нужно решить уравнение

Вспоминаем  теорему  Виета:

Для приведенного квадратного уравнения (т.е. такого, коэффициент при  в котором равен единице)   сумма корней равна коэффициенту , взятому с обратным знаком, а произведение корней равно свободному члену , то есть ,

Так вот, очевидно, на роль корней уравнения  претендуют числа и , так как и

Вот, пожалуй, все основные случае, где можно сэкономить время и силы при решении квадратного уравнения, о которых я хотела рассказать.

За улыбкой –> + показать

egemaximum.ru

Квадратные уравнения. Примеры решения

Задачи на квадратное уравнение изучаются и в школьной программе и в ВУЗах. Под ними понимают уравнения вида a*x^2 + b*x + c = 0,где x- переменная, a,b,c – константы; a<>0. Задача состоит в отыскании корней уравнения.

Геометрический смысл квадратного уравнения

Графиком функции, которая представлена квадратным уравнением является парабола. Решения (корни) квадратного уравнения - это точки пересечения параболы с осью абсцисс (х). Из этого следует, что есть три возможных случая:1) парабола не имеет точек пересечения с осью абсцисс. Это означает, что она находится в верхней плоскости с ветками вверх или нижней с ветками вниз. В таких случаях квадратное уравнение не имеет действительных корней (имеет два комплексных корня).

2) парабола имеет одну точку пересечения с осью Ох. Такую точку называют вершиной параболы, а квадратное уравнение в ней приобретает свое минимальное или максимальное значение. В этом случае квадратное уравнение имеет один действительный корень (или два одинаковых корня).

3) Последний случай на практике интересный больше - существует две точки пересечения параболы с осью абсцисс. Это означает, что существует два действительных корня уравнения.

На основе анализа коэффициентов при степенях переменных можно сделать интересные выводы о размещении параболы.

1) Если коэффициент а больше нуля то парабола направлена ветками вверх, если отрицательный - ветки параболы направлены вниз.

2) Если коэффициент b больше нуля то вершина параболы лежит в левой полуплоскости, если принимает отрицательное значение - то в правой.

Вывод формулы для решения квадратного уравнения

Перенесем константу с квадратного уравнения за знак равенства, получим выражение

Умножим обе части на 4а

Чтобы получить слева полный квадрат добавим в обеих частях b^2 и осуществим преобразование

Отсюда находим

Формула дискриминанта и корней квадратного уравнения

Дискриминантом называют значение подкоренного выраженияЕсли он положительный то уравнение имеет два действительных корня, вычисляемые по формулеПри нулевом дискриминант квадратное уравнение имеет одно решение (два совпадающих корня), которые легко получить из приведенной выше формулы при D=0При отрицательном дискриминант уравнения действительных корней нет. Однако исують решения квадратного уравнения в комплексной плоскости, и их значение вычисляют по формуле

Теорема Виета

Рассмотрим два корня квадратного уравнения и построим на их основе квадратное уравнение.С записи легко следует сама теорема Виета: если имеем квадратное уравнение видато сумма его корней равна коэффициенту p, взятому с противоположным знаком, а произведение корней уравнения равен свободному слагаемому q. Формульная запись вышесказанного будет иметь видЕсли в классическом уравнении константа а отлична от нуля, то нужно разделить на нее все уравнение, а затем применять теорему Виета.

Расписание квадратного уравнения на множители

Пусть поставлена задача: разложить квадратное уравнение на множители. Для его выполнения сначала решаем уравнение (находим корни). Далее, найденные корни подставляем в формулу разложения квадратного уравненияНа этом задача будет разрешен.

Задачи на квадратное уравнение

Задача 1. Найти корни квадратного уравнения

x^2-26x+120=0.

Решение: Запишем коэффициенты и подставим в формулу дискриминантаКорень из данного значения равен 14, его легко найти с калькулятором, или запомнить при частом использовании, однако для удобства, в конце статьи я Вам дам список квадратов чисел, которые часто могут встречаться при подобных задачах.Найденное значение подставляем в формулу корнейи получаем

 

Задача 2. Решить уравнение

2x2+x-3=0.

Решение: Имеем полное квадратное уравнение, выписываем коэффициенты и находим дискриминантПо известным формулам находим корни квадратного уравнения

 

Задача 3. Решить уравнение

9x2-12x+4=0.

Решение: Имеем полное квадратное уравнение. Определяем дискриминантПолучили случай когда корни совпадают. Находим значения корней по формуле

 

Задача 4. Решить уравнение

x^2+x-6=0.

Решение: В случаях когда есть малые коэффициенты при х целесообразно применять теорему Виета. По ее условию получаем два уравненияС второго условия получаем, что произведение должно быть равно -6. Это означает, что один из корней отрицателен. Имеем следующую возможную пару решений{-3;2}, {3;-2}. С учетом первого условия вторую пару решений отвергаем.Корни уравнения равны

 

Задача 5. Найти длины сторон прямоугольника, если его периметр 18 см, а площадь 77 см2.

Решение: Половина периметра прямоугольника равна сумме соседних сторон. Обозначим х – большую сторону, тогда 18-x меньшая его сторона. Площадь прямоугольника равна произведению этих длин:х(18-х)=77;илих2-18х+77=0.Найдем дискриминант уравненияВычисляем корни уравненияЕсли х=11, то 18-х=7, наоборот тоже справедливо (если х=7 , то 21-х=9).

 

Задача 6. Разложить квадратное 10x2-11x+3=0 уравнения на множители.

Решение: Вычислим корни уравнения, для этого находим дискриминантПодставляем найденное значение в формулу корней и вычисляемПрименяем формулу разложения квадратного уравнения по корнямиРаскрыв скобки получим тождество.

Квадратное уравнение с параметром

Пример 1. При каких значениях параметра а, уравнение (а-3)х2+(3-а)х-1/4=0 имеет один корень?

Решение: Прямой подстановкой значения а=3 видим, что оно не имеет решения. Далее воспользуемся тем, что при нулевом дискриминанте уравнение имеет один корень кратности 2. Выпишем дискриминантупростим его и приравняем к нулюПолучили квадратное уравнение относительно параметра а, решение которого легко получить по теореме Виета. Сумма корней равна 7, а их произведение 12. Простым перебором устанавливаем, что числа 3,4 будут корнями уравнения. Поскольку решение а=3 мы уже отвергли в начале вычислений, то единственным правильным будет - а=4. Таким образом, при а=4 уравнение имеет один корень.

 

Пример 2. При каких значениях параметра а, уравнение а(а+3)х^2+(2а+6)х-3а-9=0 имеет более одного корня?

Решение:Рассмотрим сначала особые точки, ими будут значения а=0 и а=-3. При а=0 уравнение упростится до вида 6х-9=0; х=3/2 и будет один корень. При а= -3 получим тождество 0=0.Вычислим дискриминанти найдем значения а при котором оно положительноС первого условия получим а>3. Для второго находим дискриминант и корни уравненияОпределим промежутки где функция принимает положительные значения. Подстановкой точки а=0 получим 3>0. Итак, за пределами промежутка (-3;1/3) функция отрицательная. Не стоит забывать о точке а=0, которую следует исключить, поскольку в ней исходное уравнение имеет один корень.В результате получим два интервала, которые удовлетворяют условию задачиПодобных задач на практике будет много, постарайтесь разобраться с заданиями самостоятельно и не забывайте учитывать условия, которые взаимоисключают друг друга. Хорошо изучите формулы для решения квадратных уравнений, они довольна часто нужны при вычислениях в разных задачах и науках.

yukhym.com



О сайте

Онлайн-журнал "Автобайки" - первое на постсоветском пространстве издание, призванное осветить проблемы радовых автолюбителей с привлечение экспертов в области автомобилестроения, автоюристов, автомехаников. Вопросы и пожелания о работе сайта принимаются по адресу: Онлайн-журнал "Автобайки"