Объем треугольной пирамиды. Формула нахождения объема пирамиды

БЕСПЛАТНО ответим на Ваши вопросы
По лишению прав, ДТП, страховом возмещении, выезде на встречную полосу и пр. Ежедневно с 9.00 до 21.00
Москва и МО +7 (499) 938-51-97
С-Петербург и ЛО +7 (812) 467-32-86
Бесплатный звонок по России 8-800-350-23-69 доб.418

Объём пирамиды формула

В геометрии пирамидой называют тело, которое имеет в основании многоугольник, а все его грани представляют собой треугольники с общей вершиной. В зависимости от того, какая именно фигура лежит в основании, пирамиды подразделяются на треугольные, четырехугольные, пятиугольные и т.д. Кроме того, различают правильные, усеченные, прямоугольные и произвольные пирамиды. Формула для вычисления объема этого тела не отличается сложностью и всем известна из школьного курса геометрии.

Расчет объема пирамиды

 

 

 

h – высота пирамиды

S – площадь основания ABCDE

V – объем пирамиды

В геометрии пирамидой называют тело, которое имеет в основании многоугольник, а все его грани представляют собой треугольники с общей вершиной. В зависимости от того, какая именно фигура лежит в основании, пирамиды подразделяются на треугольные, четырехугольные, пятиугольные и т.д. Кроме того, различают правильные, усеченные, прямоугольные и произвольные пирамиды. Формула для вычисления объема этого тела не отличается сложностью и всем известна из школьного курса геометрии.

Классическим примером использования пирамид в архитектуре являются египетские гробницы фараонов, многие из которых имеют именно такую форму. Следует заметить, что аналогичные сооружения (хотя и несколько видоизмененные) встречаются и в других частях света и странах, например, в Мексике и Китае, причем характерно, что практически везде являются или усыпальницами, или культовыми сооружениями. Конечно, при их проектировании древние архитекторы вряд ли стремились определить объем своих детищ, а вот их «последователям» делать это наверняка приходится.

Современные зодчие также порой создают пирамидальные здания, в которых чаще всего располагаются объекты социально-культурного назначения (торгово-развлекательные комплексы, выставочные галереи и т.п.), и при этом рассчитывать объем этих сооружений необходимо для того, чтобы они соответствовали принятым строительным нормам, правилам и нормативам. Кроме того, точное значение этой величины требуется для того, чтобы наиболее рационально разместить в строении инженерные коммуникации.

В последние годы все большую популярность завоевывают теплицы, имеющие форму пирамиды. Чаще всего они возводятся из прозрачного поликарбоната и, как утверждают их разработчики, имеют существенные преимущества перед традиционными. Поскольку при одной и той же общей площади основания объем содержащегося в них воздуха примерно в три раза меньше, то и нагревается он существенно быстрее. К тому же, распределяется он более рационально, поскольку пространства для самого теплого газа, скапливающегося вверху, в пирамидальной теплице также меньше.

Пирамиды часто можно встретить и в обычных квартирах, загородных домах и коттеджах. Их форму нередко имеют раструбы кухонных вытяжек, использующихся для эффективного отвода из помещений горячего воздуха, дыма и гари. В виде усеченных пирамид часто изготавливаются те элементы вентиляционных систем, которые применяются для сочленения воздуховодов, обладающих различным сечением.

Одной из самых популярных головоломок является так называемая «пирамидка Мефферта», которую нередко называют «тетраэдром Рубика», хотя венгерский архитектор и изобретатель не имеет к ней никакого отношения. Каждая из ее граней разделена на девять разноцветных правильных треугольников, и цель играющего состоит в том, чтобы привести игрушку в такой вид, чтобы на каждой отдельной грани все ее элементы имели одинаковый цвет.

simple-math.ru

Объем треугольной пирамиды - формула, пример расчета

Многогранник, в основании которого лежит правильный треугольник, а остальные грани представлены равнобедренными треугольниками называется треугольной пирамидой.Еще такую пирамиду называют тетраэдром.Правильная пирамида обладает множеством свойств, которые выводятся из составляющих ее фигур:

  • Все стороны основания равны между собой, потому что оно представлено правильным треугольником;
  • Все ребра пирамиды также равны между собой;
  • Т.к. каждая грань образует равнобедренный треугольник, в котором ребра равны и основания равны, то можно сказать, что площадь каждой грани одинакова;
  • Все двугранные углы при основании равны.

Площадь треугольной пирамиды рассчитывается, как сумма площадей основания и боковой развертки. Также ее можно найти, если рассчитать площадь одной из боковых граней и основания. Формула объема треугольной пирамиды также выводится из свойств треугольников, из которых она состоит:

Площадь основания рассчитывается из формулы площади правильного треугольника:Рассмотрим пример расчета объема треугольной пирамиды.

Пусть дана треугольная пирамида. Сторона основания равна a = 2 см, а высота равна h = 2√3. Найдите объем заданного многогранника. Для начала найдем площадь основания. Для этого подставим известные данные в приведенную выше формулу: Теперь используем найденное значение для расчета объема треугольной пирамиды: Для расчета площади треугольной пирамиды можно также использовать сокращенную формулу. В ней совмещаются площадь основания и высота, а читается такая формула как треть произведения площади основания на высоту пирамиды:

Используя эту формулу, важно строго следить за подсчетами и сокращениями. Одна маленькая ошибка может привести к неверному результату. В целом, найти объем правильной треугольной пирамиды очень просто.

2mb.ru

Объём правильной пирамиды

Объём правильной пирамиды. Продолжаем рассматривать задачи с пирамидами. На блоге уже рассмотрены задания с правильными пирамидами, в этих статьях шла речь о нахождении элементов и площади поверхности. Здесь разберём примеры связанные с понятием объёма. Для решения подобных заданий обязательно нужно знать формулу объёма пирамиды:

S – площадь основания пирамиды 

h – высота пирамиды

Основанием может быть любой многоугольник. Но в большинстве задач на ЕГЭ речь в условии, как правило, идёт о правильных пирамидах. Напомню одно из её свойств:

Вершина правильной пирамиды проецируется в центр её основания

Посмотрите на  проекцию правильной треугольной, четырёхугольной и  шестиугольной пирамид (ВИД СВЕРХУ):

 

Можете посмотреть ещё одну статью на блоге, где разбирались задачи связанные с нахождением объёма пирамиды. Рассмотрим задачи:

27087. Найдите объем правильной треугольной пирамиды, стороны основания которой равны 1, а высота равна корню из трёх.

Объём пирамиды вычисляется по формуле:

S – площадь основания пирамиды

h – высота пирамиды

Найдём площадь основания пирамиды, это правильный треугольник. Воспользуемся формулой – площадь треугольника равна половине произведения соседних сторон на синус угла между ними, значит:

Таким образом, объём пирамиды равен:

Ответ: 0,25

27088. Найдите высоту правильной треугольной пирамиды, стороны основания которой равны 2, а объем равен корню из трёх.

Такие понятия как высота пирамиды и характеристики её основания связаны формулой объёма:

S – площадь основания пирамиды

h – высота пирамиды

Сам объём нам известен, площадь основания можем найти, так как известны стороны треугольника, который является основанием. Зная указанные величины без труда найдём высоту.

Для нахождения площади основания воспользуемся формулой – площадь треугольника равна половине произведения соседних сторон на синус угла между ними, значит:

Таким образом, подставив данные значения в формулу объема можем вычислить высоту пирамиды:

Высота равна трём.

Ответ: 3

27109. В правильной четырехугольной пирамиде высота равна 6, боковое ребро равно 10. Найдите ее объем.

Объём пирамиды вычисляется по формуле:

S – площадь основания пирамиды

h – высота пирамиды

Высота нам известна. Необходимо найти площадь основания. Напомню, что вершина правильной пирамиды проецируется в центр её основания. Основанием правильной четырёхугольной пирамиды является квадрат. Мы можем найти его диагональ. Рассмотрим прямоугольный треугольник (выделен синим):

Отрезок соединяющий центр квадрата с точкой В это катет, который равен половине диагонали квадрата. Этот катет можем вычислить по теореме Пифагора:

Значит BD = 16. Вычислим площадь квадрата воспользовавшись формулой площади четырёхугольника:

Следовательно:

Таким образом, объём пирамиды равен:

Ответ: 256

27178. В правильной четырехугольной пирамиде высота равна 12, объем равен 200. Найдите боковое ребро этой пирамиды.

Высота пирамиды и её и объём известны, значит можем найти площадь квадрата, который является основанием. Зная площадь квадрата, мы сможем найти его диагональ. Далее рассмотрев прямоугольный треугольник по теореме Пифагора  вычислим боковое ребро:

Найдём площадь квадрата (основания пирамиды):

Вычислим диагональ квадрата. Так как его площадь равна 50, то сторона будет равна корню из пятидесяти и по теореме Пифагора:

Точка О делит диагональ BD пополам, значит катет прямоугольного треугольника ОВ = 5.

Таким образом, можем вычислить чему равно боковое ребро пирамиды:

Ответ: 13

245353. Найдите объем пирамиды, изображенной на рисунке. Ее основанием является многоугольник, соседние стороны которого перпендикулярны, а одно из боковых ребер перпендикулярно плоскости основания и равно 3.

Как уже неоднократно было сказано –  объём пирамиды вычисляется по формуле:

S – площадь основания пирамиды

h – высота пирамиды

Боковое ребро перпендикулярное основанию равно трём, это означает, что высота пирамиды равна трём. Основания пирамиды –  это многоугольник, площадь которого равна:

Таким образом:

Ответ: 27

27086. Основанием пирамиды является прямоугольник со сторонами 3 и 4. Ее объем равен 16. Найдите высоту этой пирамиды.

Посмотреть решение

27110. Основанием пирамиды служит прямоугольник, одна боковая грань перпендикулярна плоскости основания, а три другие боковые грани наклонены к плоскости основания под углом 600. Высота пирамиды равна 6. Найдите объем пирамиды.

Посмотреть решение

27111. Боковые ребра треугольной пирамиды взаимно перпендикулярны, каждое из них равно 3. Найдите объем пирамиды.

Посмотреть решение

27113. Объем треугольной пирамиды SABC, являющейся частью правильной шестиугольной пирамиды SABCDEF, равен 1. Найдите объем шестиугольной пирамиды.

Посмотреть решение

27114. Объем правильной четырехугольной пирамиды SABCD равен 12. Точка E — середина ребра SB. Найдите объем треугольной пирамиды EABC.

Посмотреть решение

 

27176. Найдите объем пирамиды, высота которой равна 6, а основание — прямоугольник со сторонами 3 и 4.

Посмотреть решение

27179. Сторона основания правильной шестиугольной пирамиды равна 2, боковое ребро равно 4. Найдите объем пирамиды.

Посмотреть решение

27181. Сторона основания правильной шестиугольной пирамиды равна 4, а угол между боковой гранью и основанием равен 450. Найдите объем пирамиды.

Посмотреть решение

 

На этом всё. Успеха Вам!

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

matematikalegko.ru

Как найти объем пирамиды и усеченного ее варианта. Формула для определения на Kak-Legko.ru

При слове «пирамида» на ум обычно приходят великие египетские творения — плод непосильного труда древних египтян, для которых это сооружение было священным и символизировало связь неба и земли. Данные сооружения являли собой гробницы усопших фараонов и имели огромное значение для народа Египта. Не многие знают, что само слово «пирамида» обозначает многогранник. Если обратиться к математическим терминам, она определяется как объемная геометрическая фигура, в основании которой лежит многоугольник, и грани которой имеют треугольную форму и общую вершину. Пирамиды различают по типу многоугольников, лежащих в ее основе, например: треугольная, четырехугольная и т. д. Далее мы рассмотрим, как находить объем каждой из этих разновидностей.

Инструкция:

  • Если в условии задачи вам известна площадь основания фигуры, а также ее высота, формула объема пирамиды будет равна одной трети произведения этих значений. Математически это выглядит так: V=1/3(SH), где S –площадь основания, а h – высота.
  • Если площадь основания неизвестна, ее можно найти, используя соответствующую формулу для нужного вам многогранника.
  • Если в основании лежит правильный многоугольник, такая пирамида называется правильной. Формула объема в таком случае, равна одной трети произведения высоты и площади данного многоугольника. Искомая площадь вычисляется так: в многоугольник вписывается окружность, таким образом, разбивая его на треугольники с общей вершиной в центре этой окружности. Площадь, соответственно, равна произведению его полупериметра на радиус вписанной в многоугольник окружности.
  • Для того, чтобы понять, как найти объем пирамиды, у которой нет вершины, уточним, что такое усеченная пирамида. Это такая разновидность пирамидальной фигуры, образованная вследствие проведения секущей плоскости, параллельной основанию. Формула объема усеченной пирамиды имеет более сложный вид за счет того, что для вычисления нам потребуются площади основания и сечения. Чтобы найти площадь сечения, обратитесь к формулам, которые мы рассмотрели выше. Когда обе площади вам известны, пользуемся следующей формулой V = (S1 + √(S1·S2) +S2)·H/3, то есть одна треть произведения высоты и суммы площадей основания, сечения и средней пропорциональной между ними.

Похожие инструкции

Математические ребусы

Разгадывание ребусов – это, своего рода, интеллектуальная игра, суть которой заключается в разгадывании...

Деление в столбик

Деление в столбик – это вводной курс математики, который наши школьники проходят еще в начальной школе. В...

Как найти тангенс угла

Тангенс — это одна из тригонометрических функций. Изначально тригонометрические функции выражают...

Как найти объем куба

Куб – это трехмерная геометрическая фигура, многогранник, ребра которого равны. Он состоит из шести граней,...

kak-legko.ru

Как вычисляют объем пирамиды?

Слово «пирамида» невольно ассоциируется с величественными великанами в Египте, верно хранящими покой фараонов. Может быть поэтому пирамиду как геометрическую фигуру безошибочно узнают все, даже дети.

Тем не менее, попробуем дать ей геометрическое определение. Представим на плоскости несколько точек (А1,А2,..., Ап) и еще одну (Е), не принадлежайшую ей. Так вот, если точку Е (вершину) соединить с вершинами многоугольника, образованного точками А1,А2,..., Ап (основание), получится многогранник, который и называют пирамидой. Очевидно, что вершин у многоугольника в основании пирамиды может быть сколько угодно, и в зависимости от их количества пирамиду можно назвать треугольной и четырехугольной, пятиугольной и т.д.

Если внимательно присмотреться к пирамиде, то станет ясно, почему ее определяют еще и по-другому – как геометрическую фигуру, имеющую в основании многоугольник, а в качестве боковых граней – треугольники, объединенные общей вершиной.

Поскольку пирамида – пространственная фигура, то и у нее есть такая количественная характеристика, как объем. Объем пирамиды вычисляют по хорошо известной формуле объема, равного трети произведения основания пирамиды на ее высоту:

Объем пирамиды при выводе формулы первоначально рассчитывается для треугольной, взяв за основу постоянное соотношение, связывающее эту величину с объемом треугольной призмы, имеющей то же основание и высоту, которая, как оказывается, в три раза превышает этот объем.

А поскольку любая пирамида разбивается на треугольные, и ее объем не зависит от выполняемых при доказательстве построений, правомерность приведенной формулы объема – очевидна.

Особняком среди всех пирамид стоят правильные, у которых в основании лежит правильный многоугольник. Что же касается высоты пирамиды , то она должна «оканчиваться» в центре основания.

В случае неправильного многоугольника в основании для вычисления площади основания потребуется:

  • разбить его на треугольники и квадраты;
  • подсчитать площадь каждого из них;
  • сложить полученные данные.

В случае правильного многоугольника в основании пирамиды, его площадь рассчитывают по готовым формулам, поэтому объем правильной пирамиды вычисляется совсем просто.

Например, чтобы вычислить объем четырехугольной пирамиды, если она правильная, возводят длину стороны правильного четырехугольника (квадрата) в основании в квадрат и, умножив на высоту пирамиды, делят полученное произведение на три.

Объем пирамиды можно вычислить, используя и другие параметры:

  • как треть произведения радиуса шара, вписанного в пирамиду, на площадь ее полной поверхности;
  • как две трети произведения расстояния между двумя произвольно взятыми скрещивающимися ребрами и площади параллелограмма, который образуют середины оставшихся четырех ребер.

Объем пирамиды вычисляется просто и в случае, когда его высота совпадает с одним из боковых ребер, то есть в случае прямоугольной пирамиды.

Говоря о пирамидах, нельзя обойти вниманием также усеченные пирамиды, полученные сечением пирамиды параллельной основанию плоскостью. Их объем практически равен разности объемов целой пирамиды и отсеченной вершины.

Первым объем пирамиды, правда не совсем в его современном виде, однако равным 1/3 объема известной нам призмы, нашел Демокрит. Его метод подсчета Архимед назвал «без доказательства», поскольку Демокрит подходил к пирамиде, как к фигуре, сложенной из бесконечно тонких, подобных пластинок.

К вопросу нахождения объема пирамиды «обратилась» и векторная алгебра, используя для этого координаты ее вершин. Пирамида, построенная на тройке векторов a,b,c, равна одной шестой от модуля смешанного произведения заданных векторов.

fb.ru



О сайте

Онлайн-журнал "Автобайки" - первое на постсоветском пространстве издание, призванное осветить проблемы радовых автолюбителей с привлечение экспертов в области автомобилестроения, автоюристов, автомехаников. Вопросы и пожелания о работе сайта принимаются по адресу: Онлайн-журнал "Автобайки"