Как написать электронно-графическую формулу. Электронные формулы как составлять


Как составлять электронные формулы химических элементов?

Как составлять электронные формулы химических элементов?

  • Задача составления электронной формулы химического элемента не самая простая.

    Научившись раз, дальше вы легко будете справляться с составлением формулы всех химических элементов.

    Итак, алгоритм составления электронных формул элементов такой:

    • Сначала записываем знак хим. элемента, где внизу слева от знака указываем его порядковый номер.
    • Далее по номеру периода (из которого элемент) определяем число энергетических уровней и рисуем рядом со знаком хим-го элемента такое количество дуг.
    • Затем по номеру группы число электронов на внешнем уровне, записываем под дугой.
    • На 1 - ом уровне максимально возможно 2е, на втором уже 8, на третьем - целых 18. Начинаем ставить числа под соответствующими дугами.
    • Число электронов на предпоследнем уровне нужно рассчитывать так: из порядкового номера элемента отнимается число уже проставленных электронов.
    • Остается превратить нашу схему в электронную формулу:

    Вот электронные формулы некоторых химических элементов:

    1. Пишем химический элемент и его порядковый номер.Номер показывает кол-во электронов в атоме.
    2. Составляем формулу. Для этого нужно узнать количество энергетических уровней, основой для определения берется номер периода элемента.
    3. Разбиваем уровни на под уровни.

    Ниже можно увидеть пример, как правильно составлять электронные формулы химических элементов.

  • Составить электронные формулы химических элементов нужно таким способом: нужно посмотреть номер элемента в таблице Менделеева, таким образом узнать сколько у него электронов. Затем нужно узнать количество уровней, который равен периоду. Затем пишутся подуровни и они заполняются:

  • -Первым делом вам надо определить число атомов согласно таблицы Менделеева.

    -Далее следует определить число энергетических уровней - основополагающим здесь будет являться номер периода, в котором размещн данный элемент.

    -Далее за эти вам необходимо приступить к разбитию уровней на подуровни, заполняемые электронами. При этом основываться стоит на принципе наименьшей энергии.

  • Для составления электронной формулы вам понадобится периодическая система Менделеева. Находите ваш химический элемент там и смотрите период - он будет равен числу энергетических уровней. Номер группы будет соответствовать численно количеству электронов на последнем уровне. Номер элемента будет количественно равен числу его электронов.Так же вам четко надо знать, что на первом уровне есть максимум 2 электрона, на втором - 8, на третьем - 18.

    Это основные моменты. Ко всему прочему в интернете (в том числе и нашем сайте) вы можете найти информацию с уже готовой электронной формулой для каждого элемента, так вы сможете проверить себя.

  • Составление электронных формул химических элементов очень даже сложный процесс, без специальных таблиц тут не обойтись, да и формул нужно применять целую кучу. Вкратце для составления нужно пройти по этим этапам:

    Нужно составить орбитальную диаграмму, в которой будет понятие отличия электронов друг от друга. В диаграмме выделяются орбитали и электроны.

    Электроны заполняются по уровням, снизу в верх и имеют несколько подуровней.

    Итак вначале узнам общее количество электронов заданного атома.

    Заполняем формулу по определнной схеме и записываем - это и будет электронной формулой.

    Например у Азота эта формула выглядит так, сначала разбираемся с электронами:

    И записываем формулу:

  • Чтобы понять принцип составления электронной формулы химического элемента, для начала нужно определить по номеру в таблице Менделеева общее количество электронов в атоме. После этого нужно определить число энергетических уровней, взяв за основу номер периода, в котором находится элемент.

    После этого уровни разбиваются на подуровни, которые заполняют электронами, основываясь на Принципе наименьшей энергии.

    Можно проверить правильность своих рассуждений, заглянув, например, сюда.

  • Составив электронную формулу химического элемента, можно узнать, сколько электронов и электронных слоев в конкретном атоме, а также порядок их распределения по слоям.

    Для начала определяем порядковый номер элемента по таблице Менделеева, он соответствует числу электронов. Количество электронных слоев указывает на номер периода, а количество число электронов на последнем слое атома соответствует номеру группы.

    • сначала заполняем s-подуровень, а потом р-, d- b f-подуровни;
    • по правилу Клечковского электроны заполняют орбитали в порядке возрастания энергии этих орбиталей;
    • по правилу Хунда электроны в пределах одного подуровня занимают свободные орбитали по одному, а потом образуют пары;
    • по принципу Паули на одной орбитали больше 2 электронов не бывает.
  • Электронная формула химического элемента показывает сколько электронных слоев и сколько электронов содержится в атоме и как они распределены по слоям.

    Чтобы составить электронную формулу химического элемента, нужно заглянуть в таблицу Менделеева и использовать полученные сведения для данного элемента. Порядковый номер элемента в таблице Менделеева соответствует количеству электронов в атоме. Число электронных слоев соответствует номеру периода, число электронов на последнем электронном слое соответствует номеру группы.

    Необходимо помнить, что на первом слое находится максимум 2 электрона 1s2, на втором - максимум 8 (два s и шесть р: 2s2 2p6), на третьем - максимум 18 ( два s, шесть p, и десять d: 3s2 3p6 3d10).

    Например, электронная формула углерода: С 1s2 2s2 2p2 (порядковый номер 6, номер периода 2, номер группы 4).

    Электронная формула натрия: Na 1s2 2s2 2p6 3s1 (порядковый номер 11, номер периода 3, номер группы 1).

    Для проверки правильности написания электронной формулы можно заглянуть на сайт www.alhimikov.net.

  • Составление электронной формулы хим.элементов на первый взгляд может показаться довольно сложным занятием, однако все станет понятно, если придерживаться следующей схемы:

    • сперва пишем орбитали
    • вставляем перед орбиталями числа, которые указывают номер энергетического уровня. Не забываем формулу для определения максимального количества электронов на энергетическом уровне: N=2n2

    А как узнать число энергетических уровней? Просто посмотрите таблицу Менделеева: это число равно номеру периода, в котором данный элемент находится.

    • над значком орбитали пишем число, которое обозначает количество электронов, которые находятся на этой орбитали.

    Например, электронная формула скандия будет выглядеть таким образом:

  • info-4all.ru

    Электронные формулы

    Условное изображение распределения электронов в электронном облаке по уровням, подуровням и орбиталям называется электронной формулой атома.

    Правила, на основе|основании| которых|каких| составляют|сдают| электронные формулы

    1. Принцип минимальной энергии: чем меньший запас энергии имеет система, тем более стойкой она является.

    2. Правило Клечковского: распределение электронов по уровням и подуровням электронного облака происходит в порядке возростания значения суммы главного и орбитального квантовых чисел ( n + 1 ). В случае равенства значений ( n + 1) первым заполняется тот подуровень, который имеет меньшее значение n .

    1 s 2 s p 3 s p d 4 s p d f 5 s p d f 6 s p d f 7 s p d f Номер уровня n 1 2 2 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 Орбитальное 1* 0 0 1 0 1 2 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 квантовое число

    n+1| 1 2 3 3 4 5 4 5 6 7 5 6 7 8 6 7 8 9 7 8 9 10

    Ряд Клечковского

    1* - смотри таблицу №2.

    3. Правило Хунда : при заполнении орбиталей одного подуровня низшему уровню энергии отвечает размещение электронов с параллельными спинами.

    или

    4. Принцип Паули : в атоме не могут быть даже двух электронов с одинаковым набором четырех квантовых чисел.

    1s1

    n 1 1

    l 0 0

    ml 0 0

    ms + -

    Составление|сдает| электронных формул

    Потенциальный ряд:1 s 2 s p 3 s p d 4 s p d f 5 s p d f 6 s p d f 7 s p d f

    ( n+1|) 1 2 3 3 4 5 4 5 6 7 5 6 7 8 6 7 8 9 7 8 9 10

    Ряд Клечковского

    Порядок заполнения Електрони1s22s2p63s2p64s23d104p65s24d105p66s24f145d106p67s25f14..

    (n+l|) 1 2 3 3 4 4 5 5 5 6 6 6 7 7 7 7 8.

    Электронная формула 1s22s2p63s2p6d104s2p6d10f145s2p6d10f146s2p6d10f147s2p6d10f148...

    ( n+1|) 1 2 3 3 4 5 4 5 6 7 5 6 7 8 6 7 8 9 7 8 9 10

    Информативность электронных формул

    1. Положение элемента в периодической|периодичной| системе.

    2. Возможны степени| окисления элемента.

    3. Химический характер элемента.

    4. Состав|склад| и свойства соединений элемента.

    1. Положение элемента в периодической|периодичной| системе Д.И.Менделеева :

    а) номер периода, в котором находится элемент, отвечает числу уровней, на которых располагаются электроны;

    б) номер группы, к которой принадлежит данный элемент, равняется сумме валентных электронов. Валентные электроны для атомов s- и р- элементов – это электроны внешнего уровня; для d – элементов - это электроны внешнего уровня и незаполненного подуровня предыдущего уровня.

    в) электронное семейство определяется по символу подуровня, на который поступает последний электрон (s-, p-, d-, f- ).

    г) подгруппа определяется по принадлежности к электронному семейству: s - и р – элементы занимают главные подгруппы, а d – элементы - побочные, f – элементы занимают отдельные разделы в нижней части периодической системы ( актиноиды и лантаноиды ).

    2. Возможные степени| окисления элементов.

    Степень окисления – это заряд, который приобретает атом, если отдает или присоединяет электроны.

    Атомы, которые отдают электроны, приобретают положительный заряд, который равняется числу отданных электронов ( заряд электрона (-1)

    Z Е0 – ne ZE+n

    Атом, который отдал электроны превращается в катион (положительный заряженный ион). Процесс отрыва электрона от атома называется процессом ионизации. Энергия, необходимая на осуществление этого процесса называется энергией ионизации (Эион, еВ).

    Первыми отделяются от атома электроны внешнего уровня, которые на орбитали не имеют пары, - розпарованные. При наличии свободных орбиталей в пределах одного уровня под действием внешней энергии электроны, которые образовывали на данном уровне пары, розпаровываються, а затем отделяются все вместе. Процесс розпаровывания, который происходит в результате поглощения одним из электронов пары порции энергии и переходом его на высший подуровень, называется процессом возбуждения.

    Наибольшее количество электронов, которые может отдать атом, равняется числу валентных электронов и отвечает номеру группы, в которой расположен элемент. Заряд, который приобретает атом после потери всех валентных электронов, называется высшей степенью окисления атома.

    После освобождения|увольнения| валентного уровня внешним становится|стает| уровень, который|какой| предшествовал валентному. Это полностью заполненный электронами уровень, и потому|и поэтому| энергетически стойкий.

    Атомы элементов, которые имеют на внешнем уровне от 4 до 7 электронов, достигают энергетически стойкого состояния не только путем отдачи электронов, но и путем их присоединения. Вследствие этого образуется уровень ( .ns2p6 ) – стойкое инертногазовое состояние.

    Атом, который присоединил электроны, приобретает отрицательную степень окисления – отрицательный заряд, который равняется числу принятых электронов.

    Z Е0 + ne ZE-n

    Число электронов, которые может присоединить атом, равняется числу ( 8 –N|), где N – это номер группы, в которой|какой| расположен элемент ( или число валентных электронов).

    Процесс присоединения электронов к атому сопровождается выделением энергии, которая называется сродством к электрону (Эсродства, еВ).

    studfiles.net

    КАК СОСТАВИТЬ ЭЛЕКТРОННУЮ ФОРМУЛУ ХИМИЧЕСКОГО ЭЛЕМЕНТА - Электронные формулы атомов химических элементов

    Свойства простых веществ, а так же формы и свойства соединений элементов находятся в периодической зависимости от заряда ядра и электронной конфигурации атомов элемента. Марганец — это элемент четвертого периода, следовательно, у него четыре энергетических уровня. Таким образом, мы пришли к ситуации, когда полностью исчерпаны первые три уровня (n=1, n=2, n=3) и заполнен s-подуровень 4-го уровня: 1s22s22p63s23p63d104s2. При заполнении использовано 30 электронов, остается еще 10. Следующий подуровень, подлежащий заполнению, — 4р-подуровень (но не 5s – см. второе правило Клечковского). Ему соответствуют 3р-орбитали, на которых размещаем шесть электронов.

    Решение.Свойством, определяющим силу кислот указанного ряда, является электроотрицательность атомов галогенов. Чем больше электроотрицательность галогена, тем в большей степени стабилизирован анион кислоты (О–Hal)–, образующийся в результате акта отдачи протона, то есть реализации кислотности. Это приводит к ослаблению сил кулоновского притяжения между разноименно заряженными частицами и увеличению способности гидроксида к продуцированию гидроксид-аниона.

    Согласно правилу Паули на одной орбитали (и соответственно, на s-подуровне) может быт размещено максимум два электрона со спиновыми квантовыми числами ms=+1/2 и ms=-1/2. Ему соответствует гантелеобразная форма орбитали (p-орбиталь). Для l=1 магнитное квантовое число принимает три значения -1, 0 и +1. Эти три значения определяют наличие на р-подуровне трех орбиталей, каждая из которых может принять максимум два электрона. Магнитное квантовое число ml (-1, 0, +1) определяет ориентацию орбитали в пространстве. На всех трех р-орбиталях (px, py, pz) находится по одному электрону (ms=+1/2).

    Валентность- это число химических связей, которым один атом связан с другим. Валентные возможности атома определяются числом неспаренных электронов и наличием на внешнем уровне свободных атомных орбиталей. Строение наружных энергетических уровней атомов химических элементов и определяет в основном свойства их атомов. Поэтому эти уровни называют валентными.Электроны этих уровней, а иногда и предвнешних уровней могут принимать участие в образовании химических связей. Такие электроны также называют валентными. По современным представлениям химическая связь имеет электронную природу, но осуществляется она по-разному.

    F характеризует окислительные св-ва атомов элементов: чем выше F, тем выше окислительные св-ва. F зависит от r(радиуса атома), Z (заряда) и от электронной конфигурации атомов элемента. Такую электронную конфигурацию наружного энергетического уровня имеет атом мышьяка As, электронная формула которого следующая: 1s22s22p63s23p63d104s24p3. Его заполнение начинается после того, как на (n-1)d-подуровне появится 1 электрон. После этого (начиная с Hf в 6 периоде и Rf в 7 периоде) продолжается заполнение (n-1)d-подуровня до 10 электронов.

    Записываем знак элемента, а также его порядковый номер. Пользуясь правилом Клечковского, распределяем по энергетическим уровням и подуровням электроны. Последовательно располагаем их на первом, втором, а также третьем уровне, вписывая в каждую ячейку по два электрона.

    С помощью 4-х квантовых чисел можно описать состояние любого электрона в вакууме, для этого составляют электронные формулы атомов. При этом различают ковалентные и металлические радиусы атомов.Зависимость атомных и ионных радиусов от заряда ядра атома элемента и носит периодический характер. В периодах по мере увеличения атомного номера радиусы имеют тенденцию к уменьшению. Наибольшее уменьшение характерно для элементов малых периодов, поскольку у них заполняется внешний электронный уровень. Номер группы для элементов главных подгрупп указывает на число электронов на внешнем энергетическом уровне и на высшую положительную степень окисления.

    7. Степени окисления элементов в соединении компенсируют друг друга так, что их сумма для всех атомов в молекуле или нейтральной формульной единице равна нулю, а для иона — его заряду. Затем это различие в свойствах вновь усиливается и делается очень существенным в седьмой группе, где элементы подгруппы Mn сильно отличаются от галогенов. Так, элементы главной и побочной подгрупп третьей группы сравнительно близки по свойствам. Например, у хрома с порядковым номером 24 один из электронов с 4s-уровня переходит в ячейку d-уровня. Похожий эффект есть у молибдена, ниобия и др. Кроме того, есть понятие возбужденного состояния атома, когда спаренные электроны распариваются и переходят на соседние орбитали. Поэтому при составлении электронно-графических формул элементов пятого и последующих периодов побочной подгруппы сверяйтесь со справочником.

    Послушать еще:

    • Там были и Олег с Родионом Там были и Олег с Родионом. С улыбкой.) Но мне-то хотелось единственного, когда рука в руке, глаза в глаза, вместе и в будни, и в праздники. В конце 1980-х […]
    • Бесплатное пианино-приложение Как это научит меня играть на РЕАЛЬНОМ пианино? Лучшее Отличное пианино с постоянно добавляемыми песнями. Вот прям все, но то, что русские песни, тем более […]
    • Какая была девичья фамилия у матери Ленина? Ленин кто по национальности? Многим интересно покопаться в корнях генеалогического древа великого вождя. Кем себя считал? Что означает слово«местечко»? […]

    chasertugy.ru

    Как написать электронно-графическую формулу | Сделай все сам

    Дабы обучиться составлять электронно-графические формулы, значимо осознать теорию строения ядерного ядра. Ядро атома составляют протоны и нейтроны. Вокруг ядра атома на электронных орбиталях находятся электроны.

    Вам понадобится

    • — ручка;
    • — бумага для записей;
    • — периодическая система элементов (таблица Менделеева).

    Инструкция

    1. Электроны в атоме занимают свободные орбитали в последовательности, называемой шкалой энергии:1s / 2s, 2p / 3s, 3p / 4s, 3d, 4p / 5s, 4d, 5p / 6s, 4d, 5d, 6p / 7s, 5f, 6d, 7p. На одной орбитали могут располагаться два электрона с противоположными спинами – направлениями вращения.

    2. Конструкцию электронных оболочек выражают с поддержкой графических электронных формул. Для записи формулы используйте матрицу. В одной ячейке могут располагаться один либо два электрона с противоположными спинами. Электроны изображаются стрелками. Матрица наглядно показывает, что на s-орбитали могут располагаться два электрона, на p-орбитали – 6, на d – 10, на f -14.

    3. Разглядите правило составления электронно-графической формулы на примере марганца. Обнаружьте марганец в таблице Менделеева. Его порядковый номер 25, значит в атоме 25 электронов, это элемент четвертого периода.

    4. Запишите порядковый номер и символ элемента рядом с матрицей. В соответствии со шкалой энергии заполоните ступенчато 1s, 2s, 2p, 3s, 3p, 4s ярусы, вписав по два электрона в ячейку. Получится 2+2+6+2+6+2=20 электронов. Эти ярусы заполнены всецело.

    5. У вас осталось еще пять электронов и незаполненный 3d-ярус. Расположите электроны в ячейках d-подуровня, начиная слева. Электроны с идентичными спинами расположите в ячейках вначале по одному. Если все ячейки заполнены, начиная слева, добавьте по второму электрону с противоположным спином. У марганца пять d-электронов, расположенных по одному в всей ячейке.

    6. Электронно-графические формулы наглядно показывают число неспаренных электронов, которые определяют валентность.

    При создании теоретических и фактических работ по математике, физике, химии студент либо школьник сталкивается с необходимостью вставки особых символов и трудных формул. Располагая приложением Word из офисного пакета Microsoft, дозволено набрать электронную формулу всякий трудности.

    Инструкция

    1. Откройте новейший документ в Microsoft Word. Присвойте ему наименование и сбережете в той же папке, где у вас лежит работа, дабы в грядущем не искать.

    2. Перейдите на вкладку «Вставка». Справа обнаружьте символ ?, а рядом надпись «Формула». Нажмите на стрелочку. Появится окно, в котором вы можете предпочесть встроенную формулу, скажем, формулу квадратного уравнения.

    3. Нажмите на стрелку и на верхней панели появятся самые различные символы, которые вам могут потребоваться при написании определенно этой формулы. Изменив ее так, как надобно вам, вы можете сберечь ее. С этого момента она будет выпадать в списке встроенных формул.

    4. Если вам необходимо перенести формулу в текст, тот, что позднее надобно поместить на сайте, то кликните на энергичном поле с ней правой кнопкой мыши и выберите не высокопрофессиональный, а линейный метод написания. В частности, формула все того же квадратного уравнения в данном случае примет вид:x=(-b±?(b^2-4ac))/2a.

    5. Иной вариант написания электронной формулы в Word – через конструктор. Зажмите единовременно клавиши Alt и =. У вас сразу появится поле для написания формулы, а в верхней панели откроется конструктор. Тут вы можете предпочесть все знаки, которые могут потребоваться для записи уравнения и решения всякий задачи.

    6. Некоторые символы линейной записи могут быть неясными читателю, неизвестному с компьютерной символикой. В этом случае самые трудные формулы либо уравнения имеет толк сберечь в графическом виде. Для этого откройте самый легкой графический редактор Paint: «Пуск» — «Программы» — «Paint». После этого увеличьте масштаб документа с формулой так, дабы она заняла каждый экран. Это нужно, дабы сохраненное изображение имело наибольшее разрешение. Нажмите на клавиатуре PrtScr, перейдите в Paint и нажмите Ctrl+V.

    7. Обрежьте все лишнее. В результате у вас получится добротное изображение с необходимой формулой.

    Видео по теме

    Обратите внимание! Помните, что химия – наука исключений. У атомов побочных подгрупп Периодической системы встречается «проскок» электрона. Скажем, у хрома с порядковым номером 24 один из электронов с 4s-яруса переходит в ячейку d-яруса. Схожий результат есть у молибдена, ниобия и др. Помимо того, есть представление возбужденного состояния атома, когда спаренные электроны распариваются и переходят на соседние орбитали. Следственно при составлении электронно-графических формул элементов пятого и последующих периодов побочной подгруппы сверяйтесь со справочником.

    jprosto.ru

    Как написать электронную формулу

    При создании теоретических и практических работ по математике, физике, химии студент или школьник сталкивается с необходимостью вставки специальных символов и сложных формул. Располагая приложением Word из офисного пакета Microsoft, можно набрать электронную формулу любой сложности.

    Инструкция

    • Откройте новый документ в Microsoft Word. Присвойте ему название и сохраните в той же папке, где у вас лежит работа, чтобы в будущем не искать.
    • Перейдите на вкладку «Вставка». Справа найдите символ π, а рядом надпись «Формула». Нажмите на стрелочку. Появится окно, в котором вы можете выбрать встроенную формулу, например, формулу квадратного уравнения.

    • Нажмите на стрелку и на верхней панели появятся самые разные символы, которые вам могут понадобиться при написании конкретно этой формулы. Изменив ее так, как нужно вам, вы можете сохранить ее. С этого момента она будет выпадать в списке встроенных формул.
    • Если вам нужно перенести формулу в текст, который позже нужно разместить на сайте, то кликните на активном поле с ней правой кнопкой мыши и выберите не профессиональный, а линейный способ написания. В частности, формула все того же квадратного уравнения в данном случае примет вид:x=(-b±√(b^2-4ac))/2a.

    • Другой вариант написания электронной формулы в Word – через конструктор. Зажмите одновременно клавиши Alt и =. У вас сразу появится поле для написания формулы, а в верхней панели откроется конструктор. Здесь вы можете выбрать все знаки, которые могут понадобиться для записи уравнения и решения любой задачи.
    • Некоторые символы линейной записи могут быть непонятными читателю, незнакомому с компьютерной символикой. В этом случае самые сложные формулы или уравнения имеет смысл сохранить в графическом виде. Для этого откройте самый простой графический редактор Paint: «Пуск» - «Программы» - «Paint». Затем увеличьте масштаб документа с формулой так, чтобы она заняла весь экран. Это необходимо, чтобы сохраненное изображение имело наибольшее разрешение. Нажмите на клавиатуре PrtScr, перейдите в Paint и нажмите Ctrl+V.

    • Обрежьте все лишнее. В итоге у вас получится качественное изображение с нужной формулой.

    completerepair.ru

    Как написать электронно-графическую формулу

    Чтобы научиться составлять электронно-графические формулы, важно понять теорию строения атомного ядра. Ядро атома составляют протоны и нейтроны. Вокруг ядра атома на электронных орбиталях находятся электроны.

    Вам понадобится

    • - ручка;
    • - бумага для записей;
    • - периодическая система элементов (таблица Менделеева).

    Инструкция

    • Электроны в атоме занимают свободные орбитали в последовательности, называемой шкалой энергии:1s / 2s, 2p / 3s, 3p / 4s, 3d, 4p / 5s, 4d, 5p / 6s, 4d, 5d, 6p / 7s, 5f, 6d, 7p. На одной орбитали могут располагаться два электрона с противоположными спинами – направлениями вращения.
    • Структуру электронных оболочек выражают с помощью графических электронных формул. Для записи формулы используйте матрицу. В одной ячейке могут располагаться один или два электрона с противоположными спинами. Электроны изображаются стрелками. Матрица наглядно показывает, что на s-орбитали могут располагаться два электрона, на p-орбитали – 6, на d – 10, на f -14.
    • Рассмотрите принцип составления электронно-графической формулы на примере марганца. Найдите марганец в таблице Менделеева. Его порядковый номер 25, значит в атоме 25 электронов, это элемент четвертого периода.
    • Запишите порядковый номер и символ элемента рядом с матрицей. В соответствии со шкалой энергии заполоните последовательно 1s, 2s, 2p, 3s, 3p, 4s уровни, вписав по два электрона в ячейку. Получится 2+2+6+2+6+2=20 электронов. Эти уровни заполнены полностью.
    • У вас осталось еще пять электронов и незаполненный 3d-уровень. Расположите электроны в ячейках d-подуровня, начиная слева. Электроны с одинаковыми спинами расположите в ячейках сначала по одному. Если все ячейки заполнены, начиная слева, добавьте по второму электрону с противоположным спином. У марганца пять d-электронов, расположенных по одному в каждой ячейке.
    • Электронно-графические формулы наглядно показывают количество неспаренных электронов, которые определяют валентность.

    completerepair.ru



    О сайте

    Онлайн-журнал "Автобайки" - первое на постсоветском пространстве издание, призванное осветить проблемы радовых автолюбителей с привлечение экспертов в области автомобилестроения, автоюристов, автомехаников. Вопросы и пожелания о работе сайта принимаются по адресу: Онлайн-журнал "Автобайки"