Справочник химика 21. Электролит определение


примеры. Состав и свойства электролитов. Сильные и слабые электролиты

Электролиты как химические вещества известны с древних времён. Однако большинство областей своего применения они завоевали относительно недавно. Мы обсудим самые приоритетные для промышленности области использования этих веществ и разберёмся, что же последние собой представляют и чем отличаются друг от друга. Но начнём с экскурса в историю.

История

Самые старые известные электролиты - это соли и кислоты, открытые ещё в Древнем мире. Однако представления о строении и свойствах электролитов развивались со временем. Теории этих процессов эволюционировали, начиная с 1880 годов, когда был сделан ряд открытий, связанный с теориями свойств электролитов. Наблюдались несколько качественных скачков в теориях, описывающих механизмы взаимодействия электролитов с водой (ведь только в растворе они приобретают те свойства, благодаря которым их используют в промышленности).

Сейчас мы подробно разберём несколько теорий, оказавших наибольшее влияние на развитие представлений об электролитах и их свойствах. И начнём с самой распространённой и простой теории, которую каждый из нас проходил в школе.

Теория электролитической диссоциации Аррениуса

в 1887 году шведский химик Сванте Аррениус и русско-немецкий химик Вильгельм Оствальд создали теорию электролитической диссоциации. Однако тут тоже не всё так просто. Сам Аррениус был сторонником так называемой физической теории растворов, которая не учитывала взаимодействие составляющих вещества с водой и утверждала, что в растворе существуют свободные заряженные частицы (ионы). Кстати, именно с таких позиций сегодня рассматривают электролитическую диссоциацию в школе.

Поговорим всё-таки о том, что даёт эта теория и как она объясняет нам механизм взаимодействия веществ с водой. Как и у любой другой, у неё есть несколько постулатов, которые она использует:

1. При взаимодействии с водой вещество распадается на ионы (положительный - катион и отрицательный - анион). Эти частицы подвергаются гидратации: они притягивают молекулы воды, которые, кстати, заряжены с одной стороны положительно, а с другой - отрицательно (образуют диполь), в результате формируются в аквакомплексы (сольваты).

2. Процесс диссоциации обратим - то есть если вещество распалось на ионы, то под действием каких-либо факторов оно вновь может превратиться в исходное.

3. Если подключить к раствору электроды и пустить ток, то катионы начнут движение к отрицательному электроду - катоду, а анионы к положительно заряженному - аноду. Именно поэтому вещества, хорошо растворимые в воде, проводят электрический ток лучше, чем сама вода. По той же причине их назвали электролитами.

4. Степень диссоциации электролита характеризует процент вещества, подвергшегося растворению. Этот показатель зависит от свойств растворителя и самого растворённого вещества, от концентрации последнего и от внешней температуры.

Вот, по сути, и все основные постулаты этой несложной теории. Ими мы будем пользоваться в этой статье для описания того, что же происходит в растворе электролита. Примеры этих соединений разберём чуть позже, а сейчас рассмотрим другую теорию.

Теория кислот и оснований Льюиса

По теории электролитической диссоциации, кислота - это вещество, в растворе которого присутствует катион водорода, а основание - соединение, распадающееся в растворе на гидроксид-анион. Существует другая теория, названная именем известного химика Гилберта Льюиса. Она позволяет несколько расширить понятие кислоты и основания. По теории Льюиса, кислоты - это ионы или молекулы вещества, которые имеют свободные электронные орбитали и способны принять электрон от другой молекулы. Несложно догадаться, что основаниями будут являться такие частицы, которые способны отдать один или несколько своих электронов в "пользование" кислоте. Очень интересно здесь то, что кислотой или основанием может быть не только электролит, но и любое вещество, даже нерастворимое в воде.

Протолитическая теория Брендстеда-Лоури

В 1923 году, независимо друг от друга, двое учёных - Й. Бренстед и Т. Лоури -предложили теорию, которая сейчас активно применяется учёными для описания химических процессов. Суть этой теории в том, что смысл диссоциации сводится к передаче протона от кислоты основанию. Таким образом, последнее понимается здесь как акцептор протонов. Тогда кислота является их донором. Теория также хорошо объясняет существование веществ, проявляющих свойства и кислоты и основания. Такие соединения называются амфотерными. В теории Бренстеда-Лоури для них также применяется термин амфолиты, тогда как кислота или основания принято называть протолитами.

Мы подошли к следующей части статьи. Здесь мы расскажем, чем отличаются друг от друга сильные и слабые электролиты и обсудим влияние внешних факторов на их свойства. А затем уже приступим к описанию их практического применения.

Сильные и слабые электролиты

Каждое вещество взаимодействует с водой индивидуально. Какие-то растворяются в ней хорошо (например, поваренная соль), а какие-то совсем не растворяются (например, мел). Таким образом, все вещества делятся на сильные и слабые электролиты. Последние представляют собой вещества, плохо взаимодействующие с водой и оседающие на дне раствора. Это означает, что они имеют очень низкую степень диссоциации и высокую энергию связей, которая не позволяет при нормальных условиях распадаться молекуле на составляющие её ионы. Диссоциация слабых электролитов происходит либо очень медленно, либо при повышении температуры и концентрации этого вещества в растворе.

Поговорим о сильных электролитах. К ним можно отнести все растворимые соли, а также сильные кислоты и щёлочи. Они легко распадаются на ионы и очень трудно собрать их в осадки. Ток в электролитах, кстати, проводится именно благодаря ионам, содержащимся в растворе. Поэтому лучше всех проводят ток сильные электролиты. Примеры последних: сильные кислоты, щёлочи, растворимые соли.

Факторы, влияющие на поведение электролитов

Теперь разберёмся, как влияет изменение внешней обстановки на свойства веществ. Концентрация напрямую влияет на степень диссоциации электролита. Более того, это соотношение можно выразить математически. Закон, описывающий эту связь, называется законом разбавления Оствальда и записывается так: a = (K / c)1/2. Здесь a - это степень диссоциации (берётся в долях), К - константа диссоциации, разная для каждого вещества, а с - концентрация электролита в растворе. По этой формуле можно узнать много нового о веществе и его поведении в растворе.

Но мы отклонились от темы. Кроме концентрации, на степень диссоциации также влияет температура электролита. Для большинства веществ её увеличение повышает растворимость и химическую активность. Именно этим можно объяснить протекание некоторых реакций только при повышенной температуре. При нормальных условиях они идут либо очень медленно, либо в обе стороны (такой процесс называется обратимым).

Мы разобрали факторы, определяющие поведение такой системы, как раствор электролита. Сейчас перейдём к практическому применению этих, без сомнения, очень важных химических веществ.

Промышленное использование

Конечно, все слышали слово "электролит" применительно к аккумуляторам. В автомобиле используют свинцово-кислотные аккумуляторы, роль электролита в котором выполняет 40-процентная серная кислота. Чтобы понять, зачем там вообще нужно это вещество, стоит разобраться в особенностях работы аккумуляторов.

Так в чём принцип работы любого аккумулятора? В них происходит обратимая реакция превращения одного вещества в другое, в результате которой высвобождаются электроны. При заряде аккумулятора происходит взаимодействие веществ, которого не получается при нормальных условиях. Это можно представить как накопление электроэнергии в веществе в результате химической реакции. При разряде же начинается обратное превращение, приводящее систему к начальному состоянию. Эти два процесса вместе составляют один цикл заряда-разряда.

Рассмотрим вышеизложенный процесс на конкретном примере - свинцово-кислотном аккумуляторе. Как нетрудно догадаться, этот источник тока состоит из элемента, содержащего свинец (а также диокисд свинца PbO2) и кислоты. Любой аккумулятор состоит из электродов и пространства между ними, заполненного как раз электролитом. В качестве последнего, как мы уже выяснили, в нашем примере используется серная кислота концентрацией 40 процентов. Катод такого аккумулятора делают из диоксида свинца, а анод состоит из чистого свинца. Всё это потому, что на этих двух электродах протекают разные обратимые реакции с участием ионов, на которые продиссоциировала кислота:

  1. PbO2 + SO42-+ 4H+ + 2e- = PbSO4 + 2h3O (реакция, происходящая на отрицательном электроде - катоде).
  2. Pb + SO42- - 2e- = PbSO4 (Реакция, протекающая на положительном электроде - аноде).

Если читать реакции слева направо - получаем процессы, происходящие при разряде аккумулятора, а если справа налево - при заряде. В каждом химическом источнике тока эти реакции разные, но механизм их протекания в общем описывается одинаково: происходят два процесса, в одном из которых электроны "поглощаются", а в другом, наоборот, "выходят". Самое главное то, что число поглощённых электронов равно числу вышедших.

Собственно, кроме аккумуляторов, существует масса применений этих веществ. Вообще, электролиты, примеры которых мы привели, - это лишь крупинка того многообразия веществ, которые объединены под этим термином. Они окружают нас везде, повсюду. Вот, например, тело человека. Думаете, там нет этих веществ? Очень ошибаетесь. Они находятся везде в нас, а самое большое количество составляют электролиты крови. К ним относятся, например, ионы железа, которые входят в состав гемоглобина и помогают транспортировать кислород к тканям нашего организма. Электролиты крови также играют ключевую роль в регуляции водно-солевого баланса и работе сердца. Эту функцию выполняют ионы калия и натрия (существует даже процесс, происходящий в клетках, который назвается калий-натриевым насосом).

Любые вещества, которые вы в силах растворить хоть немного, - электролиты. И нет такой отрасли промышленности и нашей с вами жизни, где бы они ни применялись. Это не только аккумуляторы в автомобилях и батарейки. Это любое химическое и пищевое производство, военные заводы, швейные фабрики и так далее.

Состав электролита, кстати, бывает разным. Так, можно выделить кислотный и щелочной электролит. Они принципиально отличаются своими свойствами: как мы уже говорили, кислоты являются донорами протонов, а щёлочи - акцепторами. Но со времением состав электролита меняется вследствие потери части вещества концентрация либо уменьшается, либо увеличивается (всё зависит от того, что теряется, вода или электролит).

Мы каждый день сталкиваемся с ними, однако мало кто точно знает определение такого термина, как электролиты. Примеры конкретных веществ мы разобрали, поэтому перейдём к немного более сложным понятиям.

Физические свойства электролитов

Теперь о физике. Самое важное, что нужно понимать при изучении этой темы - как передаётся ток в электролитах. Определяющую роль в этом играют ионы. Эти заряженные частицы могут переносить заряд из одной части раствора в другую. Так, анионы стремятся всегда к положительному электроду, а катионы - к отрицательному. Таким образом, действуя на раствор электрическим током, мы разделяем заряды по разным сторонам системы.

Очень интересна такая физическая характеристика, как плотность. От неё зависят многие свойства обсуждаемых нами соединений. И зачастую всплывает вопрос: "Как поднять плотность электролита?" На самом деле ответ прост: необходимо понизить содержание воды в растворе. Так как плотность электролита большей частью определяется плотностью серной кислоты, то она большей частью зависит от концентрации последней. Существует два способа осуществить задуманное. Первый достаточно простой: прокипятить электролит, содержащийся в аккумуляторе. Для этого нужно зарядить его так, чтобы температура внутри поднялась чуть выше ста градусов по цельсию. Если этот способ не помогает, не переживайте, существует ещё один: просто-напросто заменить старый электролит новым. Для этого нужно слить старый раствор, прочистить внутренности от остатков серной кислоты дистиллированной водой, а затем залить новую порцию. Как правило, качественные растворы электролита сразу имеют нужную величину концентрации. После замены можете надолго забыть о том, как поднять плотность электролита.

Состав электролита во многом определяет его свойства. Такие характеристики, как электропроводность и плотность, например, сильно зависят от природы растворённого вещества и его концентрации. Существует отдельный вопрос о том, сколько электролита в аккумуляторе может быть. На самом деле его объём напрямую связан с заявленной мощностью изделия. Чем больше серной кислоты внутри аккумулятора, тем он мощнее, т. е. тем большее напряжение способен выдавать.

Где это пригодится?

Если вы автолюбитель или просто увлекаетесь автомобилями, то вы и сами всё понимаете. Наверняка вы даже знаете, как определить, сколько электролита в аккумуляторе находится сейчас. А если вы далеки от автомобилей, то знание свойств этих веществ, их применения и того, как они взаимодействуют друг с другом будет совсем не лишним. Зная это, вы не растеряетесь, если вас попросят сказать, какой электролит в аккумуляторе. Хотя даже если вы не автолюбитель, но у вас есть машина, то знание устройства аккумулятора будет совсем не лишним и поможет вам в ремонте. Будет гораздо легче и дешевле сделать всё самому, нежели ехать в автоцентр.

А чтобы лучше изучить эту тему, мы рекомендуем почитать учебник химии для школы и вузов. Если вы хорошо знаете эту науку и прочитали достаточно учебников, лучшим вариантом будут "Химические источники тока" Варыпаева. Там изложены подробно вся теория работы аккумуляторов, различных батарей и водородных элементов.

Заключение

Мы подошли к концу. Подведём итоги. Выше мы разобрали всё, что касается такого понятия, как электролиты: примеры, теория строения и свойств, функции и применение. Ещё раз стоит сказать, что эти соединения составляют часть нашей жизни, без которой не могли бы существовать наши тела и все сферы промышленности. Вы помните про электролиты крови? Благодаря им мы живём. А что насчёт наших машин? С помощью этих знаний мы сможем исправить любую проблему, связанную с аккумулятором, так как теперь понимаем, как поднять плотность электролита в нём.

Всё рассказать невозможно, да мы и не ставили такой цели. Ведь это далеко не всё, что можно рассказать об этих удивительных веществах.

fb.ru

ЭЛЕКТРОЛИТЫ - это... Что такое ЭЛЕКТРОЛИТЫ?

в-ва, в к-рых в заметной концентрации присутствуют ионы, обусловливающие прохождение электрич. тока (ионную проводимость). Э. также наз. проводниками второго рода. В узком смысле слова Э.-в-ва, молекулы к-рых в р-ре вследствие электролитической диссоциации распадаются на ионы. Различают электролиты твердые, растворы электролитов и ионные расплавы. Р-ры электролитов часто также наз. Э. В зависимости от вида р-рителя различают Э. водные и электролиты неводные. Особый класс составляют высокомол. Э.- полиэлектролиты. В соответствии с природой ионов, образующихся при электролитич. диссоциации водных р-ров, выделяют солевые Э. (в них отсутствуют ионы Н + и ОН -), к-ты (преобладают ионы Н +) и основания (преобладают ионы ОН -). Если при диссоциации молекул Э. число катионов совпадает с числом анионов, такие Э. наз. симметричными (1,1 -валентными, напр. КС1, 2,2-валентными, напр. CaSO4, и т. д.). В противном случае Э. наз. несимметричными (1,2-валентные Э., напр. h3SO4, 3,1-валентные, напр. А1(ОН)3, и т. д.). По способности к электролитич. диссоциации Э. условно разделяют на сильные и слабые. Сильные Э. практически полностью диссоциированы на ионы в разбавленных р-рах. К ним относятся многие неорг. соли, нек-рые к-ты и основания в водных р-рах, а также в р-рителях, обладающих высокой диссоциирующей способностью (напр., в спиртах, амидах, кетонах). Молекулы слабых Э. лишь частично диссоциированы на ионы, к-рые находятся в динамич. равновесии с недиссоциир. молекулами. К слабым Э. относятся многие орг. к-ты и основания в водных и неводных р-рителях. Степень диссоциации зависит от природы р-рителя, концентрации р-ра, т-ры и др. факторов. Один и тот же Э. при одинаковой концентрации, но в разл. р-рителях образует р-ры с разл. степенью диссоциации. Электролитич. диссоциация приводит к увеличению общего числа частиц в р-ре, что обусловливает существенное различие между св-вами разбавл. р-ров электролитов и неэлектролитов. Этим, в частности, объясняется увеличение осмотич. давления р-ра и его отклонение от закона Вант-Гофа (см. Осмос), понижение давления пара р-рителя над р-ром и его отклонение от Рауля закона, увеличение изменения т-ры кипения и замерзания р-ра относительно чистого р-рителя и др. Ионы в Э. являются отд. кинетич. единицами и участвуют в хим. р-циях и электрохим. процессах часто независимо от природы др. ионов, присутствующих в р-ре. При прохождении электрич. тока через Э. на погруженных в него электродах происходят окислит.-восстановит. р-ции, в результате чего в своб. виде выделяются в-ва, к-рые становятся компонентами Э. (см. Электролиз). Э. по своей структуре представляют собой сложные системы, состоящие из ионов, окруженных молекулами р-рителя, недиссоциированных молекул растворенного в-ва, ионных пар и более крупных агрегатов. Св-ва Э. определяются характером ион-ионных и ион-молекулярных взаимод., а также изменением св-в и структуры р-рителя под влиянием растворенных частиц Э. В полярных р-рителях благодаря интенсивному взаимод. ионов с молекулами р-рителя образуются сольватные структуры (см. Сольватация). Роль сольватации с увеличением валентности ионов и уменьшением их кристаллографич. размеров возрастает. Мерой взаимод. ионов с молекулами р-рителя является энергия сольватации. В зависимости от концентрации Э. выделяют область разбавленных р-ров, к-рые по своей структуре близки к структуре чистого р-рителя, нарушаемой, однако, присутствием и влиянием ионов; переходную область и область концентрир. р-ров. Весьма разбавленные р-ры слабых Э. по своим св-вам близки к идеальным р-рам и достаточно хорошо описываются классич. теорией электролитич. диссоциации. Разбавленные р-ры сильных Э. заметно отклоняются от св-в идеальных р-ров, что обусловлено электростатич. межионным взаимод. Их описание проводится в рамках Дебая-Хюккеля теории, к-рая удовлетворительно объясняет концентрационную зависимость термодинамич. св-в - коэф. активности ионов, осмотич. коэф. и др., а также неравновесных св-в -электропроводности, диффузии, вязкости (см. Электропроводность электролитов). При повышении концентрации р-ров сильных Э. возникает необходимость в учете размера ионов, а также влияния сольватационных эффектов на характер межионного взаимодействия. В переходной концентрационной области под влиянием ионов происходит существенное изменение структуры р-рителя. При дальнейшем увеличении концентрации Э. почти все молекулы р-рителя связаны с ионами в сольватационные структуры и обнаруживается дефицит р-рителя, а в области концентрированных р-ров структура р-ра все более приближается к структуре соответствующих ионных расплавов или кристаллосольватов. Данные компьютерного моделирования и спектроскопич. исследований, в частности методом рассеяния нейтронов с изотопным замещением, свидетельствуют о значит. степени упорядоченности в концентрированных р-рах Э. и об образовании специфич. для каждой конкретной системы ионных структур. Напр., для водного р-ра NiCl2 характерен комплекс, содержащий ион Ni2+, окруженный 4 молекулами воды и 2 ионами Сl- в октаэдрич. конфигурации. Ионные комплексы связываются между собой посредством связей галоген - водород - кислород и более сложных взаимод., включающих молекулы воды. В ионных расплавах специфика упорядочения характеризуется структурными факторами и , описывающими флуктуации ионной плотности и заряда qкак ф-ции волнового числа k, к-рое с точностью до постоянной Планка hсовпадает с величиной импульса, передоваемого расплаву рассеивающей частицей, напр. нейтроном. Для бинарного электролита

где - парциальные структурные факторы, относящиеся к взаимод. катионов и анионов между собой и друг с другом. Для расплавов типа NaCl ф-ция близка к нулю, вследствие чего Э. можно рассматривать как смесь двух жидкостей, одна из к-рых характеризуется упорядочением по ионной плотности через ф-цию , а вторая -"зарядовым" упорядочением через ф-цию . Ф-ция имеет типичное поведение для систем с "плотностным" упорядочением, отражая значит. степень беспорядка в расположении частиц. В отличие от этого имеет резкий пик, отражающий сильное упорядочение в распределении заряда, определяемое экранированием и требованиями локальной электронейтральности. Такое упорядочение ионов приводит к возможности существования в Э. коллективных возбуждений, к-рые могут проявляться в виде пиков динамич. структурного фактора описывающего динамику флуктуации плотности заряда расплава ( - частота, связанная с энергией, передаваемой расплаву рассеивающей частицей). Для ионных расплавов Э., катионы к-рых склонны к образованию ковалентных связей с анионами (напр., для расплава CuCl), наблюдается сильная корреляция взаимод. между анионами и довольно слабая - между катионами. Переход от одной концентрационной области Э. в другую происходит плавно, вследствие чего рассмотренное выше деление является условным. Тем не менее в промежут. области нек-рые термодинамич. св-ва Э., напр. коэф. р-римости, претерпевают заметные изменения. Описание промежут. и концентрационной областей требует явного рассмотрения как ионов, так и молекул р-рителя и учета разл. видов взаимод. между всеми частицами в р-ре. В зависимости от т-ры и давления выделяют низкотемепературную и высокотемпературную области св-в Э., а также области нормальных и высоких давлений. Повышение т-ры или давления в целом снижают мол. упорядоченность р-рителя и ослабляет влияние ассоциативных и сольватационных эффектов на св-ва р-ра Э. При понижении т-ры иже т-ры плавления нек-рые концентрир. Э. могут находиться стеклообразном состоянии, напр. водные р-ры LiCl. Наряду с Э. как проводниками второго рода существуют в-ва, обладающие одновременно электронной и ионной проводимостью. К ним относятся р-ры щелочных и щел.-зем. металлов в полярных р-рителях (аммиак, амины, эфиры), а также в расплавах солей. В этих системах при изменении концентрации металла происходит фазовый переход в металлич. состояние с существенным (на неск. порядков) изменением электропроводности. При этом в электролитич. области образуется самый легкий анион -сольватированный электрон, придающий р-ру характерный синий цвет. Э. играют важную роль в науке и технике. Они участвуют в электрохим. и многих биол. процессах, являются средой для орг. и неорг. синтеза и электрохим. произ-в. Изучение св-в Э. важно для выяснения механизмов электролиза, электрокатализа, электрокристаллизации, коррозии металлов и др., для совершенствования механизмов разделения в-в - экстракции и ионного обмена. Исследование св-в Э. стимулируется энергетич. проблемами (создание новых топливных элементов, солнечных батарей, электрохимических преобразователей информации), а также проблемами защиты окружающей среды.

Лит.: Харнед Г., Оуэн Б., Физическая химия растворов электролитов, пер. с англ., М., 1952; Термодинамика и строение растворов. Материалы симпозиума "Химия водных систем при высоких температурах и давлениях", Иваново, 1986; March N.H., Тоsi M. P., Coulomb liquids, L.-[a.o.], 1984; см. также лит. к ст. Растворы электролитов, Электропроводность электролитов, Электролиты неводные, Электролиты твердые.

М. Ф. Головко.

Химическая энциклопедия. — М.: Советская энциклопедия. Под ред. И. Л. Кнунянца. 1988.

dic.academic.ru

Электролиты определение - Справочник химика 21

    Степень диссоциации слабого электролита, определенная различными способами (например, по измерению температуры кипения или электропроводности), дает удовлетворительные совпадения. Однако для сильных электролитов определение степени диссоциации различными способами дает разные результаты. Следовательно, величина степени диссоциации не характеризует реальную, истинную степень диссоциации, а представляет некоторую кажущуюся величину. [c.162]     При изучении закономерностей процесса коагуляции разбавленных латексов установлено [28—30], что длительность первой стадии коагуляции электролитами определенной концентрации достигает близкого к постоянному значения. Эта концентрация и принимается за один из основных параметров коагуляции — порог коагуляции, при достижении которого снимается энергетический барьер, препятствующий агрегации частиц с разряженными адсорбционными слоями. [c.257]

    На ионизацию электролита определенное влияние оказывает полярность молекул растворителя, их способность к донорно-акцепторному и дативному взаимодействию с растворенным веществом и ионами, способность молекул растворителя образовать водородные связи. Выделяющаяся при сольватации ионов энергия часто с избытком компенсирует энергию, необходимую для разрушения кристаллической решетки и разрыва связей в молекулах растворяемых веществ. [c.184]

    Предельные подвижности различных ионов в водных растворах приведены в справочниках. Их рассчитывают из предельных электропроводностей сильных электролитов, определенных по закону Кольрауша, с использованием чисел переноса. [c.187]

    Как видно из таблицы, в общем случае величина молекулярной электропроводности электролитов определенного типа, диссоциирующих на некоторое число ионов, мало зависит от состава комплексного иона, его строения, от природы внешнесферного однозарядного иона (табл. 76). [c.270]

    Нетрудно проводить и обратные расчеты зная степень диссоциации растворенного электролита, определенную другим независимым методом, можно вычислить давление пара над раствором. [c.281]

    А. И. Левин и Е. А. Укше показали, что в тех случаях, когда в растворе присутствуют два комплексообразователя при относительно малых плотностях тока, в процессе разряда участвует наименее прочный комплекс. Так, например, при прибавлении к пирофосфатному электролиту определенного количества лимоннокислого натрия отмечалось, что реакция катодного восстановления протекает по схеме- [c.339]

    Обмен ионами между раствором электролита и твердой фазой, являющийся разновидностью сорбционных процессов, имеет широкое практическое применение. Он используется для концентрирования ионов из разбавленных растворов, очистки веществ от примесей электролитов, определения суммарного содержания солей в природных водах и разделения некоторых ионов при их одновременном присутствии в растворе. Особенно удачным оказалось сочетание ионообменных процессов с хроматографическим методом, положившее начало развитию ионообменного хроматографического анализа многокомпонентных гомогенных растворов. Разделение анализируемой смеси ионов в растворе позволяет легко идентифицировать и определять их количественное содержание доступными химическими или физико-химическими приемами анализа. [c.37]

    Определение количества вещества, выделившегося при прохождении через раствор электролита определенного количества электричества. [c.33]

    Блестящие электролитические покрытия могут образоваться при электрокристаллизации в электролитах определенного состава и при определенных условиях осаждения. [c.137]

    В случае электролитов определение активности учитывает диссоциацию. Для одно-одновалентного электролита КА диссоциация выражается следующим уравнением КА=К - -А . Обозначим активность электролита Й2, а активности катиона и аниона через а+ и а— Согласно 3. д. м. /( а+а-- постоянная величина. [c.120]

    В выдвинутой в 1887 г. теории Аррениус предположил, что при растворении электролита определенная часть его диссоциирует на положительно и отрицательно заряженные частицы, названные ионами . Эта теория объяснила многочисленные работы по электролизу и электрической проводимости. Доказательство существования ионов приведено ниже. [c.274]

    Различные ионы вносят не одинаковый вклад в перенос тока через раствор электролита и соответственно им приписывают различную подвижность. Доля тока, переносимая в растворе электролита определенным сортом ионов, называют числом переноса этого иона. [c.19]

    Образование ионных пар изменяет электрическую проводимость раствора, поэтому константу ассоциации можно вычислить в принципе из концентрационной зависимости проводимости [38]. Однако в раз- бавленных водных растворах степень ассоциации мала, поэтому очень трудно определить, какая часть наблюдаемой концентрационной зависимости проводимости обусловлена образованием ионных пар, какая является результатом действия других факторов (ср. разд. 4.2.3.4), так как в растворах, содержащих почти целиком ионизованный электролит, определение нескольких процентов ионных пар в присутствии почти 100% ионов значительно труднее, чем обнаружение непосредственно по их проводимости нескольких процентов ионов в растворе, содержащем главным образом недиссо-циированные молекулы. Именно поэтому получено большое число надежных данных по константам диссоциации растворов слабых электролитов в отличие от ассоциации в водных растворах сильных электролитов. Определение константы ассоциации сильных электролитов затрудняется также тем, что степень ассоциации тем выше, чем более концентрированный 5>аствор, тогда как теоретические вычисления проводимости. более надежны в разбавленных растворах. Можно отметить. [c.504]

    Приведены сольватные числа некоторых ионов в неводных средах (табл. 3) и сольватные числа электролитов, определенные различными методами (табл. 4). [c.11]

    Кондуктометрический метод в физико-химических исследованиях Определение электропроводности слабых электролитов. Определение констант диссоциации кислот. ... Определение растворимости 5 малорастворимого соединения Определение состава комплексных соединений [c.197]

    Сольватные числа электролитов, определенные различными методами [658] [c.12]

    Кислоты, соли и основания в свете теории диссоциации электролитов. Определения кислот, солей и оснований с точки зрения теории диссоциации были даны С.Аррениусом. [c.115]

    Активность сорбента условно характеризуется количеством растворенного электролита, которое было поглощено единицей веса или объема сорбента, т. е. емкостью сорбента . Испытание емкости сорбента можно проводить в статических и динамических условиях. Статическая обменная емкость (СОЕ) соответствует ионообменному равновесию, установившемуся между ионитом и раствором электролита определенной концентрации. [c.316]

    Основные качества ионита определяются сорбционной емкостью, физическими свойствами и химической стойкостью. Активность сорбента или его емкость условно характеризуется количеством растворенного электролита, поглощенным единицей веса или объема сорбента. Испытание емкости сорбента можно проводить в статических и динамических условиях. Статическая обменная емкость (СОЕ) соответствует ионообменному равновесию, установившемуся между ионитом и раствором электролита определенной концентрации. [c.302]

    Рассеивающая способность электролита, определенная опытом в такой ванне, количественно вычисляется по уравнению [c.113]

    Стандарт распространяется на методы определения рассеивающей способности (РС) электролитов определение РС предназначено для оценки способности электролитов давать на деталях сложного профиля покрытия, равномерность которых по толщине должна находиться в установленных пределах [c.616]

    Скорость коррозии железа при первом смачивании растет во времени и достигает максимума в момент исчезновения видимой пленки влаги. Затем наблюдается резкий спад тока коррозии, что может быть связано с торможением анодного процесса. При вторичном увлажнении максимум скорости растворения железа наблюдается уже в том случае, когда на поверхности металла присутствует пленка электролита определенной толщины. С каждым последующий смачиванием металлической поверхности максимальная скорость коррозии железа соответствует большей толщине слоя электролита. Положение максимума скорости коррозии железа можно условно рассматривать как время, когда меняется характер контроля коррозионного процесса. [c.178]

    Величина напряжения разложения более или менее точно может быть определена для данного электролита определенной концентрации лишь в случае выделения на электродах чистых твердых веществ. Если при электролизе на электродах образуются гвердые или жидкие растворы и, особенно, при выделении газов, напряжение разложения зависит от формы и размеров эл( ктродов, характера их поверхности, условий удаления газов и многих других обстоятельств, подчас не учитываемых Поэтому величина напряжения разложения не может служи ь однозначной характеристикой для любого электролита при различных условиях, так же как и величины потенциалов разряда ионов. Величина э.д.с. электрохимической поляризании при электролизе отражает э.д.с., реально возникающую при приложении внешней разности потенциалов и противодействующую электролизу независимо от того, протекает электролиз или он подавлен э.д.с. электрохимической поляризации. В частном случае возникающая на электродах предельная поляризация может быть как раз лишь незначительно меньшей, чем приложенная разность потенциалов. Тогда эта разность равна сумме потенциалов разряда ионов (напряжению разложения). [c.615]

    Если табличные данные для ионов, составляющих электролит, отсутствуют, можно найти Ко слабого электролита посредством комбинации Яо сильных электролитов, определенных экстраполяцией. Так, для определения Яс уксусной кислоты находят в таблицах Ко Ha OONa, H l и Na l и далее вычисляют  [c.188]

    Разбавленные растворы слабых электролитов близки по свойствам к идеальным растворам. Равновесие в таких растворах определяется константой диссоциации. Степень диссоциации слабого электролита, определенная для разбавленного электролита различными способами, дает удовлетворительные совпадения. Один из способов определения степени диссоциации слабого электролита основан на измерении осмотического давления, понижении давления пара, понижении температуры замерзания или повышении температуры кипения. В этом случае величина измеренного свойства для электролитов оказывается в i раз больше по сравнению с неэлектролитами, причем изотонический коэффициент i достаточно простым соотношением связан со степенью диссоциации. Так, в частаом случае бинарного электролита, молекулы которого распадаются на два иона, например для гидроокиси аммония, получается следующее выражение изотонического коэффициента ( 69) через степень диссоциации  [c.238]

    Сильные электролиты даже в разбавлённых растворах не ведут себя как растворы идеальные. Величина степени диссоциации таких электролитов, определенная различными способами, оказывается различной, при этом расхождения в данных больше, чем это могло бы быть вызвано погрешностями опыта. Для сильных электролитов степень диссоциации представляет кажущуюся величину. Теория электролитической диссоциации Аррениуса для сильных электролитов оказалась неприменимой. [c.239]

    Для электролитов определение активности отличается тем, что активность компонента определяется его диссоциацией и образованием ионов. Наиример, диссоциация бинарного электролита, дающего одновалентные ионы и А-, изображается урпЕнением КА = К +А . [c.216]

    Характер концентрац. зависимости А. в-ва в том или ином р-ре определяется особенностями межмолекулярных взаимодействий в нем. Теоретич. расчет А. возможен методами статистич. термодинамики для практич. расчетов широко используют приближенные модели, напр., регулярного р-ра, атермич. р-ра, групповые модели (см. Растворы неэлектролитов). Для сильных электролитов А. в первом приближении описьшается теорией Дебая-Хюккеля (см. Растворы электролитов). Определение активностей и коэф. активности в-в важно при расчетах фазовых и хим. равновесий. Так, обшее условие фазового равновесия, заключающееся в равенстве хим. потенциалов данного компонента в каждой из фаз, отвечает условию равенства А. этого компонента, если они определены по отношению к одному и тому же стандартному состоянию. [c.76]

    После того как взвешенный пикнометр заполнялся погружением в монелевый стакан и выдерживался в нем до достижения температурного равновесия с сосудом и его содержимым, его извлекали оттуда, охлаждали н, после тщательной очистки снаружи, взвешивали. Калибровка пикнометра производилась обычным методом. Объём при более высокой температуре подсчитывался с учетом коэфицнента объемного расширения меди. Удельные веса смесей электролита, определенные этим путем при температурах 85—100°С, приведены на риС 4 и в табл. 1 и 2. На графике цифры под экспериментальными точками представляют взятые отношентя числа молей фтористого водорода к числу молей фто-рйда калия. Табл. 1 показывает экспериментальные данные, на основании которых построен график в целом. [c.212]

    Сходство с коагуляцией суспензоидов видно и из табл. 8, где предельные концентрации необходимые для осаждения золя золота, сравниваются с концентрациями с, необходимыми для уменьшения вдвое объема раствора, электроосмотически проходящего через мембрану в определенный промежуток времени. Соли одновалентных щелочных металлов наименее эффективны как в том, так и в другом отношении, соли же двухвалентных и трехвалентных металлов влияют более сильно. Органические ионы и ионы тяжелых металлов ведут себя аномально. Потенциал течения также испытывает значительное влияние со стороны электролитов, причем опять-таки играет роль ион, имеющий знак, противоположный знаку заряда твердой стенки. На рис. 6 показано изменение потенциала течения в стеклянном капилляре для некоторых электролитов, определенное Кройтом. Потенциал выражен в милливольтах на сантиметр ртутного столба, приложенного к жидкости. Ионы алюминия меняют знак потенциала на обратный уже [c.214]

    Диссоциации подвержены вещества с ионными кристаллическими решетками (например, Na l) и вещества, состоящие из полярных молекул (например, НС1 и HNO3). В растворе электролита определенная доля молекул воды будет находиться в связанном состоянии. Электролиты по способности диссоциировать на ионы делятся на слабые, у которых только часть молекул диссоциирована на ионы, и сильные, в которых молекулы диссоциированы полностью. [c.48]

    Иониты, применяемые в аналитической химии, должны, быть высокооднородными по гранулометрическому составу. Величина зерен может быть от 0,15 до 1,0 мм в диаметре в зависимости от назначения смолы. Для тонкослойной хроматографии и оснащения микроколонок используют порошкообразные иониты. Качество ионообменных смол характеризуется их сорбционной емкостью и химической стойкостью. Активность сорбента (или его емкость) условно характеризуют количеством электролита, поглощаемого единицей массы ил и объема сорбента. Емкость сорбента определяют в статических и динамических условиях. Статическая обменная емкость (СОЕ) соответствует ионообменному равновесию между ионитом и раствором электролита определенной концентрации. [c.198]

    В табл. 10 приведено несколько примеров лодобных расхождений в величинах степени диссоциации сильных электролитов, определенных различными методами. В теории электролитической диссоциации обосновано научное значение понятия степени диссоциации. [c.79]

chem21.info

Электролит - это... Что такое Электролит?

Электролитами называют вещества, растворы и сплавы которых с другими веществами электролитически проводят гальванический ток. Признаком электролитической проводимости в отличие от металлической должно считать возможность наблюдать химическое разложение данного вещества при более или менее продолжительном прохождении тока. В химически чистом состоянии Э. обыкновенно обладают ничтожно малой электропроводностью. Термин Э. введен в науку Фарадеем. К. Э. до самого последнего времени относили типичные соли, кислоты и щелочи, а также воду. Исследования неводных растворов, а также исследования при очень высоких температурах значительно расширили эту область. И. А. Каблуков, Кади, Карара, П. И. Вальден и др. показали, что не только водные и спиртовые растворы заметно проводят ток, но также растворы в целом ряде других веществ, как, например, в жидком аммиаке, жидком сернистом ангидриде и т. п. Найдено также, что многие вещества и смеси их превосходные изоляторы при обыкновенной температуре, как, например, безводные окислы металлов (окись кальция, магния и др.), при повышении температуры становятся электролитическими проводниками. Известная лампа накаливания Нернста, принцип которой был открыт гениальным Яблочковым, представляет превосходную иллюстрацию этих фактов. Смесь окислов — "тельце для накаливания" в лампе Нернста, не проводящая при обыкновенной темпер., при 700° делается превосходным и притом сохраняющим твердое состояние электролитическим проводником. Можно предположить, что большинство сложных веществ, изучаемых в неорганической химии, при соответствующих растворителях или при достаточно высокой температуре могут приобрести свойства Э., за исключением, конечно, металлов и их сплавов и тех сложных веществ, для которых будет доказана металлическая проводимость. В настоящий момент указания на металлическую проводимость расплавленного йодистого серебра и др. нужно считать еще недостаточно обоснованными. Иное должно сказать о большинстве веществ, содержащих углерод, т. е. изучаемых в органической химии. Вряд ли найдутся растворители, которые сделают углеводороды или их смеси (парафин, керосин, бензин и др.) проводниками тока. Однако и в органической химии мы имеем постепенный переход от типичных Э. к типичным неэлектролитам: начиная с органических кислот к фенолам, содержащим в своем составе нитрогруппу, к фенолам, не содержащим такой группы, к спиртам, водные растворы которых принадлежат к изоляторам при небольших электровозбудительных силах и, наконец, к углеводородам — типичным изоляторам. Для многих органических, а также отчасти и некоторых неорганических соединений, трудно ожидать, чтобы повышение температуры сделало их Э., так как эти вещества раньше разлагаются от действия теплоты.

В таком неопределенном состоянии находился вопрос о том, что такое Э., до тех пор, пока не привлечена для решения его теория электролитической диссоциации (см. соответствующую статью). Относительным числом электролитически диссоциированных молекул к не распавшимся молекулам и определяется, имеем ли мы дело с типичным Э. или с типичным неэлектролитом, или с каким-либо переходным случаем. Если число этих ионов настолько мало, что ни состав их, ни относительное число не поддается никаким измерительным методам, тогда перед нами случай типичного неэлекролита. Переходные случаи — это случаи, лежащие на границе наших измерительных методов, как чисто физических, так и применяемых при химическом анализе.

Интересный вопрос возник в самое последнее время: может ли быть простое тело Э.? П. И. Вальден нашел, что растворы брома в жидком сернистом ангидриде, растворы йода в эфире и треххлористом мышьяке заметно проводят ток. Должно ли признать, что молекула йода J2 распадается на ионы электроположительный катион J. и J' — электроотрицательный анион. Однако, уже П. И. Вальден указывает на малую вероятность такого явления и предполагает, что бром и йод дают с растворителем определенные химические соединения, которые уже, в свою очередь, распадаются на ионы.

В заключение должно упомянуть об определении Э., данном маститым Гитторфом пятьдесят лет тому назад: "Э. — это соли". Этим определением Гитторф частью предвосхитил современную теорию электролитической диссоциации, указав на то, что типичное свойство солей, которое мы теперь определяем как способность к электролитической диссоциации, должно быть признаком всякого Э. (см. Электролитическая диссоциация).

Вл. Кистяковский.

dic.academic.ru

Электролит — Медицинская википедия

Электроли́т — вещество, которое проводит электрический ток вследствие диссоциации на ионы, что происходит в растворах и расплавах, или движения ионов в кристаллических решётках твёрдых электролитов. Примерами электролитов могут служить водные растворы кислот, солей и оснований и некоторые кристаллы (например, иодид серебра, диоксид циркония). Электролиты — проводники второго рода, вещества, электропроводность которых обусловлена подвижностью положительно или отрицательно заряженных ионов.

Степень диссоциации

Процесс распада молекул в растворе или расплаве электролита на ионы называется электролитической диссоциацией. Одновременно в электролите протекают процессы ассоциации ионов в молекулы. При неизменных внешних условиях (температура, концентрация и др.) устанавливается динамическое равновесие между распадами и ассоциациями. Поэтому в электролитах диссоциирована определённая доля молекул вещества. Для количественной характеристики электролитической диссоциации было введено понятие степени диссоциации.

Классификация

Исходя из степени диссоциации все электролиты делятся на две группы:

  1. Сильные электролиты — электролиты, степень диссоциации которых в растворах равна единице (то есть диссоциируют полностью) и не зависит от концентрации раствора. Сюда относятся подавляющее большинство солей, щелочей, а также некоторые кислоты (сильные кислоты, такие как HCl, HBr, HI, HNO3, h3SO4 ).
  2. Слабые электролиты — степень диссоциации меньше единицы (то есть диссоциируют не полностью) и уменьшается с ростом концентрации. К ним относят воду, ряд кислот (слабые кислоты, такие как HF), основания p-, d- и f-элементов.

Между этими двумя группами чёткой границы нет, одно и то же вещество может в одном растворителе проявлять свойства сильного электролита, а в другом — слабого.

Использование термина

В естественных науках

Термин электролит широко используется в биологии и медицине. Чаще всего подразумевают водный раствор, содержащий те или иные ионы (напр., «всасывание электролитов» в кишечнике).

В технике

Слово электролит широко используется в науке и технике, в разных отраслях оно может иметь различающийся смысл.

В электрохимии

Многокомпонентный раствор для электроосаждения металлов, а также травления и др. (технический термин, например электролит золочения).

В источниках тока

Электролиты являются важной частью химических источников тока: гальванических элементов и аккумуляторов. Электролит участвует в химических реакциях окисления и восстановления с электродами, благодаря чему возникает ЭДС. В источниках тока электролит может находиться в жидком состоянии (обычно это водный раствор) или загущённым до состояния геля.

Электролитический конденсатор

В электролитических конденсаторах в качестве одной из обкладок используется электролит. В качестве второй обкладки — металлическая фольга (алюминий) или пористый, спечённый из металлических порошков блок (тантал, ниобий). Диэлектриком в таких конденсаторах служит слой оксида самого металла, формируемый химическими методами на поверхности металлической обкладки.

Конденсаторы данного типа, в отличие от других типов, обладают несколькими отличительными особенностями:

  • Высокая объёмная и весовая удельная ёмкость.
  • Требование к полярности подключения в цепях постоянного напряжения. Несоблюдение полярности вызывает бурное вскипание электролита, приводящее к механическому разрушению корпуса конденсатора (взрыву).
  • Значительные утечки и зависимость электрической ёмкости от температуры.
  • Ограниченный сверху диапазон рабочих частот (типовые значения сотни кГц — десятки МГц в зависимости от номинальной ёмкости и технологии).

Активности в электролитах

Химический потенциал для отдельного i-го иона имеет вид: <math>\mu_i=\mu_i^{0}+RTlna_i,</math> где <math>a_i</math> - активность i-го иона в растворе.

Для электролита в целом имеем:

<math>\mu_{el}=\sum_{i}v_i\mu_i=v_+\mu_{M^+}+v_-\mu_{A^-}=v_+(\mu_{+}^{0}+RTlna_{M^+})+v_-(\mu_{-}^{0}+RTlna_{A^-})= </math>

<math>=(v_+\mu_{+}^{0}+v_-\mu_{-}^{0})+RTln(a_{M^+}^{v^-}\cdot a_{A^-}^{v^-})=\mu_0+RTlna, </math> где <math>a </math> - активность электролита; <math>v_i </math> - стехиометрические числа.

Таким образом, имеем:

<math>a=a_{+}^{v^+}\cdot a_{-}^{v^-}. </math>

Усредненная активность иона равна:

<math>a_\pm=\left [ a_{+}^{v^+}\cdot a_{-}^{v^-} \right ]^\frac{1}{v_++v_-}. </math>

Для одно-одновалентного электролита <math>v_+=v_-=1 </math> и <math>a_\pm=\sqrt{a_+\cdot a_-}, </math> то есть <math>a_\pm </math> является средним геометрическим активностей отдельных ионов.

Для добавления растворов электролитов принято пользоваться моляльной (m) концентрацией (для водных растворов m численно равен молярной (с) концентрации). Значит, <math>a_i=\gamma_im_i, </math> где <math>\gamma_i </math> - коэффициент активности i-го иона.

Литература

  • Кистяковский В. А.,. Электролит // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.

Шаблон:Состояния материи

medviki.com

Электролиты - это... Что такое Электролиты?

        жидкие или твёрдые вещества и системы, в которых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока. В узком смысле Э. называются вещества, растворы которых проводят электрический ток ионами, образующимися в результате электролитической диссоциации (См. Электролитическая диссоциация). Э. в растворах подразделяют на сильные и слабые. Сильные Э. практически полностью диссоциированы на ионы в разбавленных растворах. К ним относятся многие неорганические соли и некоторые неорганические кислоты и основания в водных растворах, а также в растворителях, обладающих высокой диссоциирующей способностью (спирты, амиды и др.). Молекулы слабых Э. в растворах лишь частично диссоциированы на ионы, которые находятся в динамическом равновесии с недиссоциированными молекулами. К слабым Э. относится большинство органических кислот и многие органические основания в водных и неводных растворах. Деление Э. на сильные и слабые в некоторой степени условно, т. к. оно отражает не свойства самих Э., а их состояние в растворе. Последнее зависит от концентрации, природы растворителя, температуры, давления и др.

         По количеству ионов, на которые диссоциирует в растворе одна молекула, различают бинарные, или одно-одновалентные, Э. (обозначаются 1-1 Э., например КС1), одно-двухвалентные Э. (обозначаются 1-2 Э., например CaCl2) и т. д. Э. типа 1-1, 2-2, 3-3 и т. п. называются симметричными, типа 1-2, 1-3 и т. п. — несимметричными.

         Свойства разбавленных растворов слабых Э. удовлетворительно описываются классической теорией электролитической диссоциации. Для не слишком разбавленных растворов слабых Э., а также для растворов сильных Э. эта теория неприменима, поскольку они являются сложными системами, состоящими из ионов, недиссоциированных молекул или ионных пар, а также более крупных агрегатов. Свойства таких растворов определяются характером взаимодействий ион-ион, ион-растворитель, а также изменением свойств и структуры растворителя под влиянием растворённых частиц. Современные статистические теории сильных Э. удовлетворительно описывают свойства лишь очень разбавленных (моль/л) растворов.

         Э. чрезвычайно важны в науке и технике. Все жидкие системы в живых организмах содержат Э. Важный класс Э. — Полиэлектролиты. Э. являются средой для проведения многих химических синтезов и процессов электрохимических производств. При этом всё большую роль играют неводные растворы Э. Изучение свойств растворов Э. важно для создания новых химических источников тока (См. Химические источники тока) и совершенствования технологических процессов разделения веществ — экстракции (См. Экстракция) из растворов и ионного обмена (См. Ионный обмен).

         А. И. Мишустин.

dic.academic.ru

Электролит Википедия

Электроли́т — вещество, которое проводит электрический ток вследствие диссоциации на ионы, что происходит в растворах и расплавах, или движения ионов в кристаллических решётках твёрдых электролитов. Примерами электролитов могут служить кислоты, соли и основания и некоторые кристаллы (например, иодид серебра, диоксид циркония). Электролиты — проводники второго рода, вещества, электропроводность которых обусловлена подвижностью положительно или отрицательно заряженных ионов.

Степень диссоциации[ | код]

Процесс распада молекул в растворе или расплаве электролита на ионы называется электролитической диссоциацией. Одновременно в электролите протекают процессы ассоциации ионов в молекулы. При неизменных внешних условиях (температура, концентрация и др.) устанавливается динамическое равновесие между распадами и ассоциациями. Поэтому в электролитах диссоциирована определённая доля молекул вещества. Для количественной характеристики электролитической диссоциации было введено понятие степени диссоциации[1].

Классификация[ | код]

Исходя из степени диссоциации все электролиты делятся на две группы:

  1. Сильные электролиты — электролиты, степень диссоциации которых в растворах равна единице (то есть диссоциируют полностью) и не зависит от концентрации раствора. Сюда относятся подавляющее большинство солей, щелочей, а также некоторые кислоты (сильные кислоты, такие как HCl, HBr, HI, HNO3, h3SO4).
  2. Слабые электролиты — степень диссоциации меньше единицы (то есть диссоциируют не полностью) и уменьшается с ростом концентрации. К ним относят воду, ряд кислот (слабые кислоты, такие как HF), основания p-, d- и f-элементов.

Между этими двумя группами чёткой границы нет, одно и то же вещество может в одном растворителе проявлять свойства сильного электролита, а в другом — слабого.

Использование термина[ | код]

В естественных науках[ | код]

Термин электролит широко используется в биологии и медицине. Чаще всего подразумевают водный раствор, содержащий те или иные ионы (напр., «всасывание электролитов» в кишечнике).

В технике[ | код]

Слово электролит широко используется в науке и технике, в разных отраслях оно может иметь различающийся смысл.

В электрохимии[ | код]

Многокомпонентный раствор для электроосаждения металлов, а также травления и др. (технический термин, например электролит золочения).

В источниках тока[ |

ru-wiki.ru



О сайте

Онлайн-журнал "Автобайки" - первое на постсоветском пространстве издание, призванное осветить проблемы радовых автолюбителей с привлечение экспертов в области автомобилестроения, автоюристов, автомехаников. Вопросы и пожелания о работе сайта принимаются по адресу: Онлайн-журнал "Автобайки"