Как найти третью сторону треугольника если известны 2. Две стороны треугольника известны как найти третью

БЕСПЛАТНО ответим на Ваши вопросы
По лишению прав, ДТП, страховом возмещении, выезде на встречную полосу и пр. Ежедневно с 9.00 до 21.00
Москва и МО +7 (499) 938-51-97
С-Петербург и ЛО +7 (812) 467-32-86
Бесплатный звонок по России 8-800-350-23-69 доб.418

Как найти сторону треугольника, если две другие известны

В геометрии часто бывают задачи, связанные со сторонами треугольников. Например, часто необходимо найти сторону треугольника, если две другие известны.

Треугольники бывают равнобедренными, равносторонними и неравносторонними. Из всего разнообразия, для первого примера выберем прямоугольный (в таком треугольнике один из углов равен 90°, прилегающие к нему стороны называются катетами, а третья — гипотенузой).

Быстрая навигация по статье

Длина сторон прямоугольного треугольника

Решение задачи следует из теоремы великого математика Пифагора. В ней говорится, что сумма квадратов катетов прямоугольного треугольника равна квадрату его гипотенузы: a²+b²=c²

  • Находим квадрат длины катета a;
  • Находим квадрат катета b;
  • Складываем их между собой;
  • Из полученного результата извлекаем корень второй степени. 

Пример: a=4, b=3, c=?

  • a²=4²=16;
  • b² =3²=9;
  • 16+9=25;
  • √25=5. То есть, длина гипотенузы данного треугольника равна 5. 

Если же у треугольника нет прямого угла, то длин двух сторон недостаточно. Для этого необходим третий параметр: это может быть угол, высота площадь треугольника, радиус вписанной в него окружности и т.д..

Если известен периметр

В этом случае задача ещё проще. Периметр (P) представляет собой сумму всех сторон треугольника: P=a+b+c. Таким образом, решив простое математическое уравнение получаем результат.

Пример: P=18, a=7, b=6, c=?

1) Решаем уравнение, перенося все известные параметры в одну сторону от знака равенства:

P=a+b+c

c=P-a-b

2) Подставляем вместо них значения и вычисляем третью сторону:

c=18-7-6=5, итого: третья сторона треугольника равна 5.

Если известен угол

Для вычисления третьей стороны треугольника по углу и двум другим сторонам, решение сводится к вычислению тригонометрического уравнения. Зная взаимосвязь сторон треугольника и синуса угла, несложно вычислить третью сторону. Для этого нужно возвести обе стороны в квадрат и сложить их результаты вместе. Затем вычесть из получившегося произведение сторон, умноженное на косинус угла: C=√(a²+b²-a*b*cosα)

Если известна площадь

В этом случае одной формулой не обойтись.

1) Сначала вычисляем sin γ, выразив его из формулы площади треугольника:

S=a*b* sin γ/2

sin γ= 2S/(a*b)

2) По следующей формуле вычисляем косинус того же угла:

sin² α + cos² α=1

cos α=√(1 — sin² α)=√(1- (2S/(a*b))²)

3) И снова воспользуемся теоремой синусов:

C=√((a²+b²)-a*b*cosα)

C=√((a²+b²)-a*b*√(1- (S/(a*b))²))

Подставив в это уравнение значения переменных, получим ответ задачи.

Поделитесь этой статьёй с друзьями в соц. сетях:

podskajem.com

Как найти длину третьей стороны треугольника?

Задачами по решению треугольников (именно так называются подобные задачи) занимается особый раздел геометрии – тригонометрия.

По длине двух сторон треугольника

Найти длину третьей стороны треугольника прямоугольного предложил известный всем древнейший математик Пифагор. За основу берется прямоугольный треугольник, то есть такой, в котором один из углов равен 90 градусам. Прилегающие стороны к данному углу всегда обозначаются как катеты, соответственно, третья, самая большая  сторона, получила название "гипотенуза". Теорема Пифагора звучит следующим образом: «квадрат длины гипотенузы равняется сумме квадратов длин катетов».

Для решения такой задачи, значение длины одного катета обозначаем как Х (икс), а другого – Y (игрек), длину гипотенузы можно обозначить как Z (зет). Теперь запишем формулу вычисления длины гипотенузы: Z в квадрате= X в квадрате+Y в квадрате. Исходя из такой формулы, в итоге получаем значение квадрата длины гипотенузы. Значит, для получения значения длины гипотенузы нужно еще извлекать квадратный корень из полученной суммы длин катетов.

Ранее мы рассмотрели идеальный вариант, когда нужно определить длину гипотенузы. Если же в задаче неизвестна длина одного из катетов, то, опираясь на указанную теорему, можно вывести производную формулу. Квадрат длины одного из катетов равен значению, полученному при вычитании квадрата длины другого катета из квадрата длины гипотенузы: Х в квадрате = Z в квадрате - Y в квадрате. Ну и последним действием идет обязательно извлечение квадратного корня из полученного значения.

Для примера возьмем простые значения длины катетов: 2 и 3 сантиметра. Путем простых математических операций получаем Z в квадрате = 4 + 9 = 13. Значит, Z примерно равен 3,6 сантиметрам. Если же исключить возведение значений в квадрат, то получится, что Z=2+3=5 сантиметров, что не соответст

elhow.ru

Известны две стороны треугольника как найти третью

Перейти к списку задач и тестов по теме «Основные свойства функции». Определение : Числовой. График периодической функции состоит из неограниченно повторяющихся одинаковых фрагментов. 3. Монотонность. Степенные функции, их свойства и графики — Степени и корни. Степенные функции.

Совет 1: Как обнаружить сторону треугольника, если две стороны известны

Решение задачи разработано старинным математиком Пифагором. Из каждого множества треугольников предпочтем прямоугольные. В них один из углов равен 90 градусов. Стороны, которые прилегают к этому углу, именуются катетами. А третья сторона, соединяющая катеты, именуется гипотенузой. Пускай один из катетов равен 15 сантиметров, а 2-й — 9 сантиметров. По теореме Пифагора обнаружим длину гипотенузы.

Инструкция

1. Обнаружьте квадрат 1-й стороны. Построим число 15 в квадрат, получим 225.

Совет 2: Как обнаружить сторону по стороне и двум углам

Геометрическая фигура, состоящая из трёх точек, не принадлежащих одной прямой называемых вершинами, и трёх попарно соединяющих их отрезков, называемых сторонами, именуется треугольником. Существует уйма задач на нахождение сторон и углов треугольника по ограниченному числу начальных данных, одна из таких задач – нахождение стороны треугольника по одной из его сторон и двум Углам .

Инструкция

1. Пускай построен треугольник? ABC и знамениты – сторона BC и углы?? и. Вестимо, что сумма углов всякого треугольника равна 180?, следственно в треугольнике? ABC угол?? будет равен?? = 180? — (?? + ??).Обнаружить стороны AC и AB дозволено применяя теорему синусов, которая гласитAB/sin?? = BC/sin?? = AC/sin?? = 2 * R, где R – радиус описанной около треугольника? ABC окружности, тогда получаемR = BC/sin. AB = 2 * R * sin. AC = 2 * R * sin. Теорему синусов дозволено использовать при всяких данных 2-х углах и стороне.

Совет 3: Как обнаружить сторону треугольника

Сторона Треугольника – это прямая, ограниченная его вершинами. Каждого их у фигуры три, это число определяет число фактически всех графических колляций: угла, медианы, биссектрисы и т. д. Дабы обнаружить Сторону Треугольника , следует наблюдательно исследовать исходные данные задачи и определить, какие из них могут стать основными либо промежуточными величинами для расчета.

Инструкция

1. Стороны Треугольника , как и других многоугольников, имеют личные наименования: боковые стороны, основание, а также гипотенуза и катеты у фигуры с прямым углом. Это облегчает расчеты и формулы, делая их больше явственными даже если треугольник произвольный. Фигура графическая, следственно ее неизменно дозволено расположить так, дабы сделать решение задачи больше наглядным.

Совет 4: Как обнаружить сторону квадратного треугольника

Квадратный треугольник больше верно именуется прямоугольным треугольником. Соотношения между сторонами и углами этой геометрической фигуры детально рассматриваются в математической дисциплине тригонометрии.

Инструкция

1. Обнаружьте Сторону прямоугольного Треугольника с поддержкой теоремы Пифагора. Согласно этой теореме, квадрат гипотенузы равен сумме квадратов катетов: с2 = a2+b2 , где с – гипотенуза Треугольника , a и b – его катеты. Дабы применить это уравнение, надобно знать длину всяких 2-х сторон прямоугольного Треугольника .

Если неведомой величиной является один из катетов, то на 3-м шаге действуем напротив. Из квадрата гипотенузы вычитаем квадрат катета. Остальное не меняется. Скажем, была знаменита гипотенуза — 17,49 сантиметров. Также знаменит катет — 9 сантиметров. Обнаружим длину иного катета. Число 17,49 в квадрате равно 305,9. Число 9 в квадрате равно 81. Вычитаем из числа 305,9 число 81, получаем 224,9. Вычисляем из этого числа корень, получаем 14,99 сантиметров — длина второго катета. Получилось чуть поменьше 15 сантиметров, так как 17,49 — мы первоначально получили приблизительное, округленное значение.

Дабы уверенно решать задачки по теореме Пифагора, потренируйтесь несколько раз. Решите штук 50 задач с различными прямоугольными треугольниками. И вы не позабудете эту теорему никогда.

Известны две стороны треугольника как найти третью

Совет 1: Как обнаружить сторону треугольника, если две стороны известны

Решение задачи разработано старинным математиком Пифагором. Из каждого множества треугольников предпочтем прямоугольные. В них один из углов равен 90 градусов. Стороны, которые прилегают к этому углу, именуются катетами. А третья сторона, соединяющая катеты, именуется гипотенузой. Пускай один из катетов равен 15 сантиметров, а 2-й — 9 сантиметров. По теореме Пифагора обнаружим длину гипотенузы.

Инструкция

1. Обнаружьте квадрат 1-й стороны. Построим число 15 в квадрат, получим 225.

Совет 2: Как обнаружить сторону по стороне и двум углам

Геометрическая фигура, состоящая из трёх точек, не принадлежащих одной прямой называемых вершинами, и трёх попарно соединяющих их отрезков, называемых сторонами, именуется треугольником. Существует уйма задач на нахождение сторон и углов треугольника по ограниченному числу начальных данных, одна из таких задач – нахождение стороны треугольника по одной из его сторон и двум Углам .

Инструкция

1. Пускай построен треугольник? ABC и знамениты – сторона BC и углы?? и. Вестимо, что сумма углов всякого треугольника равна 180?, следственно в треугольнике? ABC угол?? будет равен?? = 180? — (?? + ??).Обнаружить стороны AC и AB дозволено применяя теорему синусов, которая гласитAB/sin?? = BC/sin?? = AC/sin?? = 2 * R, где R – радиус описанной около треугольника? ABC окружности, тогда получаемR = BC/sin. AB = 2 * R * sin. AC = 2 * R * sin. Теорему синусов дозволено использовать при всяких данных 2-х углах и стороне.

Совет 3: Как обнаружить сторону треугольника

Сторона Треугольника – это прямая, ограниченная его вершинами. Каждого их у фигуры три, это число определяет число фактически всех графических колляций: угла, медианы, биссектрисы и т. д. Дабы обнаружить Сторону Треугольника , следует наблюдательно исследовать исходные данные задачи и определить, какие из них могут стать основными либо промежуточными величинами для расчета.

Инструкция

1. Стороны Треугольника , как и других многоугольников, имеют личные наименования: боковые стороны, основание, а также гипотенуза и катеты у фигуры с прямым углом. Это облегчает расчеты и формулы, делая их больше явственными даже если треугольник произвольный. Фигура графическая, следственно ее неизменно дозволено расположить так, дабы сделать решение задачи больше наглядным.

Совет 4: Как обнаружить сторону квадратного треугольника

Квадратный треугольник больше верно именуется прямоугольным треугольником. Соотношения между сторонами и углами этой геометрической фигуры детально рассматриваются в математической дисциплине тригонометрии.

Инструкция

1. Обнаружьте Сторону прямоугольного Треугольника с поддержкой теоремы Пифагора. Согласно этой теореме, квадрат гипотенузы равен сумме квадратов катетов: с2 = a2+b2 , где с – гипотенуза Треугольника , a и b – его катеты. Дабы применить это уравнение, надобно знать длину всяких 2-х сторон прямоугольного Треугольника .

Если неведомой величиной является один из катетов, то на 3-м шаге действуем напротив. Из квадрата гипотенузы вычитаем квадрат катета. Остальное не меняется. Скажем, была знаменита гипотенуза — 17,49 сантиметров. Также знаменит катет — 9 сантиметров. Обнаружим длину иного катета. Число 17,49 в квадрате равно 305,9. Число 9 в квадрате равно 81. Вычитаем из числа 305,9 число 81, получаем 224,9. Вычисляем из этого числа корень, получаем 14,99 сантиметров — длина второго катета. Получилось чуть поменьше 15 сантиметров, так как 17,49 — мы первоначально получили приблизительное, округленное значение.

Дабы уверенно решать задачки по теореме Пифагора, потренируйтесь несколько раз. Решите штук 50 задач с различными прямоугольными треугольниками. И вы не позабудете эту теорему никогда.

Известны две стороны треугольника как найти третью

Как найти длину третьей стороны треугольника?

Задачами по решению треугольников (именно так называются подобные задачи) занимается особый раздел геометрии — тригонометрия.

По длине двух сторон треугольника

Найти длину третьей стороны треугольника прямоугольного предложил известный всем древнейший математик Пифагор. За основу берется прямоугольный треугольник, то есть такой, в котором один из углов равен 90 градусам. Прилегающие стороны к данному углу всегда обозначаются как катеты, соответственно, третья, самая большая сторона, получила название «гипотенуза». Теорема Пифагора звучит следующим образом: «квадрат длины гипотенузы равняется сумме квадратов длин катетов».

Для решения такой задачи, значение длины одного катета обозначаем как Х (икс), а другого — Y (игрек), длину гипотенузы можно обозначить как Z (зет). Теперь запишем формулу вычисления длины гипотенузы: Z в квадрате= X в квадрате+Y в квадрате. Исходя из такой формулы, в итоге получаем значение квадрата длины гипотенузы. Значит, для получения значения длины гипотенузы нужно еще извлекать квадратный корень из полученной суммы длин катетов.

Ранее мы рассмотрели идеальный вариант, когда нужно определить длину гипотенузы. Если же в задаче неизвестна длина одного из катетов, то, опираясь на указанную теорему, можно вывести производную формулу. Квадрат длины одного из катетов равен значению, полученному при вычитании квадрата длины другого катета из квадрата длины гипотенузы: Х в квадрате = Z в квадрате — Y в квадрате. Ну и последним действием идет обязательно извлечение квадратного корня из полученного значения.

Для примера возьмем простые значения длины катетов: 2 и 3 сантиметра. Путем простых математических операций получаем Z в квадрате = 4 + 9 = 13. Значит, Z примерно равен 3,6 сантиметрам. Если же исключить возведение значений в квадрат, то получится, что Z=2+3=5 сантиметров, что не соответствует истине.

По длине двух сторон и по значению угла между ними

Найти длину третьей стороны треугольника можно, воспользовавшись теоремой косинусов. Данная геометрическая теорема звучит следующим образом: квадрат одной из сторон треугольника равен значению, получаемому при вычитании удвоенного произведения длины известных сторон и косинуса угла, который расположен между ними, из суммы квадратов длины известных сторон.

В математическом виде такая формула выглядит следующим образом: Z в квадрате=X&sup2-+Y&sup2—2*X*Y*cosC. Здесь X, Y, Z обозначают длину всех сторон треугольника, а С — значение в градусах угла, который расположен между известными сторонами.

Для примера используем треугольник, известные стороны которого равны 2 и 4 сантиметрам, а угол между ними составляет 60 градусов. Используем указанную ранее формулу и получаем: Z в квадрате =4+16-2*2*4*cos60=20-8=12. Длина неизвестной стороны составляет 3,46 сантиметра.

poiskvstavropole.ru

Найти третью сторону треугольника | Треугольники

Задача.

Две стороны треугольника равны 9 см и 21 см, а угол напротив большей из них равен 120 градусов. Найти третью сторону треугольника.

Дано:

∆ ABC,

∠A=120º,

BC=21 см,

AC=9 см.  

Найти:  AB

Решение:

Пусть AB=x см.

В треугольнике ABC по теореме косинусов

   

(теорему косинусов применяем к стороне BC, поскольку именно напротив нее есть угол).

   

Так как косинус 120 градусов равен — 1/2, то

   

   

   

   

Второй корень не подходит по смыслу задачи (сторона треугольника не может быть равной отрицательному числу).

Поэтому AB=15 см.

Ответ: 15 см.

Задачи на теорему косинусов

www.treugolniki.ru

как найти третью сторону треугольника по двум другим

Знать длины двух сторон не достаточно для построения треугольника - нужно не два, а три параметра. . Например, длина третьей стороны, или один из углов.

что за треугольник?

есть какой-нибудь угол?

Никак. Надо еще хотя бы один угол знать

по теореме косинусов

Если кроме двух сторон ничего не известно - никак. У треугольника с двумя известными сторонами третья может быть абсолютно любой, в зависимости от угла между известными сторонами.

По значению любого из трёх углов.

Можно без угла!!! Например: если прв. 7см а втр. 16см то решение будет такой - 9 см < a < 23!!!

Здесь не вычислять нужно, а знать свойства треугольников. Любая сторона треугольника меньше суммы двух других сторон и больше их разности.

По теореме Пифагора. неизвестную сторону берешь за х и решаешь)

touch.otvet.mail.ru

Как найти третью сторону треугольника если известны 2

Найдите площадь боковой поверхности правильной треугольной призмы, вписанной в цилиндр, радиус основания которого равен \(2\sqrt3\), а образующая равна 5.

Находим сторону треугольника, если две другие известны тремя способами, формулы

В геометрии часто бывают задачи, связанные со сторонами треугольников. Например, часто необходимо найти сторону треугольника, если две другие известны.

Треугольники бывают равнобедренными, равносторонними и неравносторонними. Из всего разнообразия, для первого примера выберем прямоугольный (в таком треугольнике один из углов равен 90°, прилегающие к нему стороны называются катетами, а третья — гипотенузой).

Быстрая навигация по статье

Длина сторон прямоугольного треугольника

Решение задачи следует из теоремы великого математика Пифагора. В ней говорится, что сумма квадратов катетов прямоугольного треугольника равна квадрату его гипотенузы: a²+b²=c²

    Находим квадрат длины катета a; Находим квадрат катета b; Складываем их между собой; Из полученного результата извлекаем корень второй степени.

Если же у треугольника нет прямого угла, то длин двух сторон недостаточно. Для этого необходим третий параметр: это может быть угол, высота площадь треугольника, радиус вписанной в него окружности и т. д..

Если известен периметр

В этом случае задача ещё проще. Периметр (P) представляет собой сумму всех сторон треугольника: P=a+b+c. Таким образом, решив простое математическое уравнение получаем результат.

Пример: P=18, a=7, b=6, c=?

1) Решаем уравнение, перенося все известные параметры в одну сторону от знака равенства:

2) Подставляем вместо них значения и вычисляем третью сторону:

C=18-7-6=5, итого: третья сторона треугольника равна 5.

Если известен угол

Для вычисления третьей стороны треугольника по углу и двум другим сторонам, решение сводится к вычислению тригонометрического уравнения. Зная взаимосвязь сторон треугольника и синуса угла, несложно вычислить третью сторону. Для этого нужно возвести обе стороны в квадрат и сложить их результаты вместе. Затем вычесть из получившегося произведение сторон, умноженное на косинус угла: C=√(a²+b²-a*b*cosα)

Если известна площадь

В этом случае одной формулой не обойтись.

1) Сначала вычисляем sin γ, выразив его из формулы площади треугольника:

2) По следующей формуле вычисляем косинус того же угла:

3) И снова воспользуемся теоремой синусов:

Подставив в это уравнение значения переменных, получим ответ задачи.

Сайт не хранит личную информацию граждан Российской Федерации (регистрация закрыта, комментарии отключены). Некоторые опубликованные на сайте материалы могут содержать информацию, предназначеную для пользователей старше 16 лет (согласно №436-ФЗ от 29.12.2010 года «О защите детей от информации причиняющей вред их здоровью и развитию»). 16+. Использование данного сайта подразумевает принятие условий пользовательского соглашения.

© Google Inc., 2016. Все права защищены. Наименование Google и логотип Google являются товарными знаками компании Google Inc.

GoogleTM, Android™, Google Maps™, Google Play™, Google Docs™, Google Picasa™, Gmail™, Google Chrome™, Google Plus™, YouTube™ и соответствующие логотипы являются товарными знаками Google, Inc. в США и других странах.

Microsoft®, Windows®, Windows XP®, Windows Vista®, Xbox®, Zune®, SharePoint®, Internet Explorer®, Hotmail®, Bing®, Office®, Word®, PowerPoint®, Excel®, Outlook® и их логотипы являются товарными знаками Microsoft Corporation в США и других странах.

Mozilla®, Mozilla Firefox® и их логотипы являются товарными знаками Mozilla Foundation в США и других странах.

Skype® и соответствующий логотип являются товарными знаками Skype в США и других странах.

Как найти третью сторону треугольника если известны 2

Как найти длину третьей стороны треугольника?

Задачами по решению треугольников (именно так называются подобные задачи) занимается особый раздел геометрии – тригонометрия.

По длине двух сторон треугольника

Найти длину третьей стороны треугольника прямоугольного предложил известный всем древнейший математик Пифагор. За основу берется прямоугольный треугольник, то есть такой, в котором один из углов равен 90 градусам. Прилегающие стороны к данному углу всегда обозначаются как катеты, соответственно, третья, самая большая сторона, получила название "гипотенуза". Теорема Пифагора звучит следующим образом: «квадрат длины гипотенузы равняется сумме квадратов длин катетов».

Для решения такой задачи, значение длины одного катета обозначаем как Х (икс), а другого – Y (игрек), длину гипотенузы можно обозначить как Z (зет). Теперь запишем формулу вычисления длины гипотенузы: Z в квадрате= X в квадрате+Y в квадрате. Исходя из такой формулы, в итоге получаем значение квадрата длины гипотенузы. Значит, для получения значения длины гипотенузы нужно еще извлекать квадратный корень из полученной суммы длин катетов.

Ранее мы рассмотрели идеальный вариант, когда нужно определить длину гипотенузы. Если же в задаче неизвестна длина одного из катетов, то, опираясь на указанную теорему, можно вывести производную формулу. Квадрат длины одного из катетов равен значению, полученному при вычитании квадрата длины другого катета из квадрата длины гипотенузы: Х в квадрате = Z в квадрате — Y в квадрате. Ну и последним действием идет обязательно извлечение квадратного корня из полученного значения.

Для примера возьмем простые значения длины катетов: 2 и 3 сантиметра. Путем простых математических операций получаем Z в квадрате = 4 + 9 = 13. Значит, Z примерно равен 3,6 сантиметрам. Если же исключить возведение значений в квадрат, то получится, что Z=2+3=5 сантиметров, что не соответствует истине.

По длине двух сторон и по значению угла между ними

Найти длину третьей стороны треугольника можно, воспользовавшись теоремой косинусов. Данная геометрическая теорема звучит следующим образом: квадрат одной из сторон треугольника равен значению, получаемому при вычитании удвоенного произведения длины известных сторон и косинуса угла, который расположен между ними, из суммы квадратов длины известных сторон.

В математическом виде такая формула выглядит следующим образом: Z в квадрате=X²+Y²-2*X*Y*cosC. Здесь X, Y, Z обозначают длину всех сторон треугольника, а С – значение в градусах угла, который расположен между известными сторонами.

Для примера используем треугольник, известные стороны которого равны 2 и 4 сантиметрам, а угол между ними составляет 60 градусов. Используем указанную ранее формулу и получаем: Z в квадрате =4+16-2*2*4*cos60=20-8=12. Длина неизвестной стороны составляет 3,46 сантиметра.

Как найти третью сторону треугольника если известны 2

Совет 1: Как обнаружить сторону треугольника, если две стороны известны

Решение задачи разработано старинным математиком Пифагором. Из каждого множества треугольников предпочтем прямоугольные. В них один из углов равен 90 градусов. Стороны, которые прилегают к этому углу, именуются катетами. А третья сторона, соединяющая катеты, именуется гипотенузой. Пускай один из катетов равен 15 сантиметров, а 2-й — 9 сантиметров. По теореме Пифагора обнаружим длину гипотенузы.

Инструкция

1. Обнаружьте квадрат 1-й стороны. Построим число 15 в квадрат, получим 225.

Совет 2: Как обнаружить сторону по стороне и двум углам

Геометрическая фигура, состоящая из трёх точек, не принадлежащих одной прямой называемых вершинами, и трёх попарно соединяющих их отрезков, называемых сторонами, именуется треугольником. Существует уйма задач на нахождение сторон и углов треугольника по ограниченному числу начальных данных, одна из таких задач – нахождение стороны треугольника по одной из его сторон и двум Углам .

Инструкция

1. Пускай построен треугольник? ABC и знамениты – сторона BC и углы?? и. Вестимо, что сумма углов всякого треугольника равна 180?, следственно в треугольнике? ABC угол?? будет равен?? = 180? — (?? + ??).Обнаружить стороны AC и AB дозволено применяя теорему синусов, которая гласитAB/sin?? = BC/sin?? = AC/sin?? = 2 * R, где R – радиус описанной около треугольника? ABC окружности, тогда получаемR = BC/sin. AB = 2 * R * sin. AC = 2 * R * sin. Теорему синусов дозволено использовать при всяких данных 2-х углах и стороне.

Совет 3: Как обнаружить сторону треугольника

Сторона Треугольника – это прямая, ограниченная его вершинами. Каждого их у фигуры три, это число определяет число фактически всех графических колляций: угла, медианы, биссектрисы и т. д. Дабы обнаружить Сторону Треугольника , следует наблюдательно исследовать исходные данные задачи и определить, какие из них могут стать основными либо промежуточными величинами для расчета.

Инструкция

1. Стороны Треугольника , как и других многоугольников, имеют личные наименования: боковые стороны, основание, а также гипотенуза и катеты у фигуры с прямым углом. Это облегчает расчеты и формулы, делая их больше явственными даже если треугольник произвольный. Фигура графическая, следственно ее неизменно дозволено расположить так, дабы сделать решение задачи больше наглядным.

Совет 4: Как обнаружить сторону квадратного треугольника

Квадратный треугольник больше верно именуется прямоугольным треугольником. Соотношения между сторонами и углами этой геометрической фигуры детально рассматриваются в математической дисциплине тригонометрии.

Инструкция

1. Обнаружьте Сторону прямоугольного Треугольника с поддержкой теоремы Пифагора. Согласно этой теореме, квадрат гипотенузы равен сумме квадратов катетов: с2 = a2+b2 , где с – гипотенуза Треугольника , a и b – его катеты. Дабы применить это уравнение, надобно знать длину всяких 2-х сторон прямоугольного Треугольника .

Если неведомой величиной является один из катетов, то на 3-м шаге действуем напротив. Из квадрата гипотенузы вычитаем квадрат катета. Остальное не меняется. Скажем, была знаменита гипотенуза — 17,49 сантиметров. Также знаменит катет — 9 сантиметров. Обнаружим длину иного катета. Число 17,49 в квадрате равно 305,9. Число 9 в квадрате равно 81. Вычитаем из числа 305,9 число 81, получаем 224,9. Вычисляем из этого числа корень, получаем 14,99 сантиметров — длина второго катета. Получилось чуть поменьше 15 сантиметров, так как 17,49 — мы первоначально получили приблизительное, округленное значение.

Дабы уверенно решать задачки по теореме Пифагора, потренируйтесь несколько раз. Решите штук 50 задач с различными прямоугольными треугольниками. И вы не позабудете эту теорему никогда.

poiskvstavropole.ru

Как найти сторону треугольника, если две другие известны | Праздник

Находим сторону треугольника, если две другие известны тремя способами, формулы.

В геометрии часто бывают задачи, связанные со сторонами треугольников. Например, часто необходимо найти сторону треугольника, если две другие известны.

Треугольники бывают равнобедренными, равносторонними и неравносторонними. Из всего разнообразия, для первого примера выберем прямоугольный (в таком треугольнике один из углов равен 90°, прилегающие к нему стороны называются катетами, а третья – гипотенузой).

Длина сторон прямоугольного треугольника

Решение задачи следует из теоремы великого математика Пифагора. В ней говорится, что сумма квадратов катетов прямоугольного треугольника равна квадрату его гипотенузы: a²+b²=c²

  • Находим квадрат длины катета a;
  • Находим квадрат катета b;
  • Складываем их между собой;
  • Из полученного результата извлекаем корень второй степени. 

Пример: a=4, b=3, c=?

  • a²=4²=16;
  • b² =3²=9;
  • 16+9=25;
  • √25=5. То есть, длина гипотенузы данного треугольника равна 5. 

Если же у треугольника нет прямого угла, то длин двух сторон недостаточно. Для этого необходим третий параметр: это может быть угол, высота, площадь треугольника, радиус вписанной в него окружности и т.д..

Если известен периметр

В этом случае задача ещё проще. Периметр (P) представляет собой сумму всех сторон треугольника: P=a+b+c. Таким образом, решив простое математическое уравнение получаем результат.

Пример: P=18, a=7, b=6, c=?

1) Решаем уравнение, перенося все известные параметры в одну сторону от знака равенства:

P=a+b+c

c=P-a-b

2) Подставляем вместо них значения и вычисляем третью сторону:

c=18-7-6=5, итого: третья сторона треугольника равна 5.

Если известен угол

Для вычисления третьей стороны треугольника по углу и двум другим сторонам, решение сводится к вычислению тригонометрического уравнения. Зная взаимосвязь сторон треугольника и синуса угла, несложно вычислить третью сторону. Для этого нужно возвести обе стороны в квадрат и сложить их результаты вместе. Затем вычесть из получившегося произведение сторон, умноженное на косинус угла: C=√(a²+b²-a*b*cosα)

Если известна площадь

В этом случае одной формулой не обойтись.

1) Сначала вычисляем sin γ, выразив его из формулы площади треугольника:

S=a*b* sin γ/2

sin γ= 2S/(a*b)

2) По следующей формуле вычисляем косинус того же угла:

sin² α + cos² α=1

cos α=√(1 – sin² α)=√(1- (2S/(a*b))²)

3) И снова воспользуемся теоремой синусов:

C=√((a²+b²)-a*b*cosα)

C=√((a²+b²)-a*b*√(1- (S/(a*b))²))

Подставив в это уравнение значения переменных, получим ответ задачи.

getonholiday.com



О сайте

Онлайн-журнал "Автобайки" - первое на постсоветском пространстве издание, призванное осветить проблемы радовых автолюбителей с привлечение экспертов в области автомобилестроения, автоюристов, автомехаников. Вопросы и пожелания о работе сайта принимаются по адресу: Онлайн-журнал "Автобайки"