Как найти диагональ равнобедренной трапеции. Диагональ в равнобедренной трапеции как найти


Все формулы диагонали равнобедренной трапеции

1. Формулы длины диагонали равнобедренной трапеции через ее стороны

 

a - нижнее основание

b - верхнее основание

c - равные боковые стороны

d - диагональ трапеции

 

Формула диагонали трапеции (d ):

 

 

2. Формулы длины диагонали равнобедренной трапеции по теореме косинусов

 

a - нижнее основание

b - верхнее основание

c - равные боковые стороны

α, β - углы трапеции

d - диагональ трапеции

 

Формулы диагонали трапеции (d ):

 

 

3. Формула длины диагонали равнобедренной трапеции

 

a - нижнее основание

b - верхнее основание

α, β - углы между диагоналями

h - высота трапеции

m - средняя линия трапеции

S - площадь трапеции

d - диагональ трапеции

 

Формулы диагонали трапеции (d ):

Справедливо для данного случая :

 

4. Формулы длины диагонали трапеции через высоту и стороны

 

a - нижнее основание

b - верхнее основание

c - равные боковые стороны

h - высота трапеции

α - угол при нижнем основании

d - диагональ трапеции

 

Формулы диагонали трапеции (d ):

 

Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии

www-formula.ru

Как найти диагональ трапеции?

Прежде, чем разбираться, как найти диагональ трапеции, вспомним, что такое трапеция. В планиметрии трапецией называют четырехугольник, у которого две противоположные стороны параллельны друг другу. Эти параллельные стороны называют основаниями трапеции, а остальные — боковыми сторонами. Боковые стороны могут быть одинаковыми, тогда мы имеем дело с равнобедренной трапецией.

Далее подробно разберем порядок нахождения длины диагоналей для общего случая — неравнобедренной трапеции. При этом будем исходить из того, что исходными данными являются длины всех четырех сторон трапеции, углы у основания неизвестны.

Расчет диагонали трапеции

В изображенной на рисунке трапеции ABCD имеются две диагонали AC и BD. Порядок нахождения их длины одинаков, поэтому рассмотрим все на примере нахождения диагонали BD, противолежащей ˂BAD.

Диагональ BD одновременно является стороной треугольника ABD и может быть рассчитана по теореме косинусов с помощью формулы:

BD = √(AB2+AD2-2AB.AD.cos ˂BAD)

В этой формуле нам известны все величины, кроме косинуса ˂BAD. Чтобы вычислить его, нам необходимо будет выполнить небольшое преобразование рисунка. «Вырежем» из исходной трапеции прямоугольник BNMC. В результате получим треугольник ABD', в котором сторона BD' будет равна стороне трапеции CD.

˂BAD' в треугольнике равен ˂BAD в трапеции, так как никаких преобразований с треугольником ABN мы не выполняли. Итак, в этом треугольнике ABD' сторона AB нам известна, сторона BD' = CD, а сторона AD' = AD – NM = AD – BC.

Получается, что по теореме косинусов cos ˂BAD = cos ˂BAD' = (AB2 + AD'2 – BD'2)/2AB.AD' = (AB2 +(AD – BC)2 – CD2)/2AB.(AD – BC)

Подставив теперь полученное выражение в найденную ранее формулу, получим:

BD = √(AB2+AD2-2AB.AD.cos ˂BAD) = √(AB2+AD2-2AB.AD.(AB2 +(AD – BC)2 – CD2)/2AB.(AD

elhow.ru

Как найти диагональ равнобедренной трапеции

Трапеция, в которой длины боковых сторон равны, а основания параллельны, называется равнобедренной или равнобокой. Обе диагонали в такой геометрической фигуре имеют одинаковую длину, которую в зависимости от известных параметров трапеции можно рассчитать разными способами.

Инструкция

  • Если известны длины оснований равнобедренной трапеции (A и B) и длина ее боковой стороны (C), то для определения длин диагоналей (D) можно воспользоваться тем, что сумма квадратов длин всех сторон равна сумме квадратов длин диагоналей. Это свойство вытекает из того факта, что каждая из диагоналей трапеции является гипотенузой треугольника, катетами в котором служат боковая сторона и основание. А согласно теореме Пифагора сумма квадратов длин катетов равна квадрату длины гипотенузы. Так как боковые стороны в равнобедренной трапеции равны, как и ее диагонали, то это свойство можно записать в таком виде: A² + B² + 2C² = 2D². Из этой формулы вытекает, что длина диагонали равна квадратному корню из половины суммы квадратов длин оснований, сложенной с квадратом длины боковой стороны: D = √((A² + B²)/2 + C²).
  • Если длины сторон не известны, но есть длина средней линии (L) и высота (H) равнобедренной трапеции, то длину диагонали (D) тоже вычислить несложно. Так как длина средней линии равна полусумме оснований трапеции, то это дает возможность найти длину отрезка между точкой на большем основании, в которую опущена высота, и вершиной, прилегающей к этому основанию. В равнобедренной трапеции длина этого отрезка будет совпадать с длиной средней линии. Так как диагональ замыкает этот отрезок и высоту трапеции в прямоугольный треугольник, то вычислить ее длину не составит труда. Например, по той же самой теореме Пифагора она будет равна квадратному корню из суммы квадратов высоты и средней линии: D=√(L² + H²).
  • Если известны длины обоих оснований равнобедренной трапеции (A и B) и ее высота (H), то, как и в предыдущем случае, можно вычислить длину отрезка между точкой, опущенной на большую сторону высоты и прилегающей к ней вершиной. Формула из предыдущего шага трансформируется к такому виду: D=√((A + B)²/4 + H²).

completerepair.ru

Все формулы диагоналей трапеции

Найти длину диагонали трапеции

зная все четыре стороны

или две стороны и угол

или высоту, сторону и угол

или площадь, другую диагональ и угол

и еще много других формул.

 

1. Формулы длины диагоналей трапеции по теореме косинусов или через четыре стороны

Формулы диагонали трапеции по теореме косинусов

 

a - нижнее основание

b - верхнее основание

c , d - боковые стороны

α, β - углы трапеции

d1 , d2 - диагонали трапеции

 

Формулы диагоналей трапеции по теореме косинусов:

Все формулы диагонали трапеции

Все формулы диагонали трапеции

 

 

Формулы диагоналей трапеции через четыре стороны:

Формулы диагонали трапеции через стороны

Формулы диагонали трапеции через стороны

 

 

2. Формула длины диагоналей трапеции через высоту

Формула длины диагоналей трапеции через высоту

 

a - нижнее основание

b - верхнее основание

c , d - боковые стороны

α, β - углы трапеции

h - высота трапеции

d1 , d2 - диагонали трапеции

 

Формулы диагоналей трапеции через высоту:

Формулы диагонали трапеции через высоту

Формулы диагонали трапеции через высоту

Формулы диагонали трапеции через высоту

 

Формулы диагонали трапеции через высоту

Формулы диагонали трапеции через высоту

Формулы диагонали трапеции через высоту

 

3. Формула длины диагонали трапеции через другую диагональ

Формула длины диагонали трапеции через другую диагональ

 

a - нижнее основание

b - верхнее основание

α, β - углы между диагоналями

h - высота трапеции

m - средняя линия трапеции

S - площадь трапеции

d1 , d2 - диагонали трапеции

 

Формулы диагоналей трапеции :

Формулы диагонали трапеции через другую диагональ

Формулы диагонали трапеции через другую диагональ

Справедливо для данного случая :

 

4. Формулы длины диагонали трапеции через сумму квадратов диагоналей

Формулы длины диагоналей трапеции через сумму квадратов диагоналей

 

a - нижнее основание

b - верхнее основание

c , d - боковые стороны

d1 , d2 - диагонали трапеции

 

Формула суммы квадратов диагоналей :

Сумма квадратов диагоналей трапеции

 

Формулы диагоналей трапеции :

Формула длины диагонали через сумму квадратов диагоналей трапеции

Формула длины диагонали через сумму квадратов диагоналей трапеци

 

Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии

www-formula.ru

Диагональ равнобедренной трапеции

Как известно, диагонали у равнобедренной трапеции одинаковые, поэтому в дальнейшем будем говорить о диагоналях в единственном числе.Итак, диагональ равнобедренной трапеции можно найти несколькими способами, в зависимости от того, значения каких параметров даны в задаче.Рассмотрим несколько вариантов.

1-й вариант. Известны стороны трапеции.

    \[diagonal^{'}=\sqrt{{bok.storona}^2+n.osnovanie\cdot v.osnovanie}\]

2-й вариант. Известны основание, боковая сторона и угол между ними.В этом случае применяется теорема косинусов, согласно которой получается следующая формула:

    \[diagonal^{'}=\sqrt{{n.osn.}^2+{b.stor.}^2-2\cdot n.osn.\cdot b.stor.\cdot {\cos \left(ugol.ostriy\right)\ }},\]

    \[diagonal^{'}=\sqrt{{n.osn.}^2+{b.stor.}^2+2\cdot n.osn.\cdot b.stor.\cdot {\cos \left(ugol.tupoy\right)\ }},\]

    \[diagonal^{'}=\sqrt{{v.osn.}^2+{b.stor.}^2-2\cdot v.osn.\cdot b.stor.\cdot {\cos \left(ugol.tupoy\right)\ }},\]

    \[diagonal^{'}=\sqrt{{v.osn.}^2+{b.stor.}^2+2\cdot v.osn.\cdot b.stor.\cdot {\cos \left(ugol.ostriy\right)\ }},\]

гдеn.osn., v.osn. — нижнее и верхнее основание соответственно;b.stor. — боковая сторона;ugol.ostriy — острый угол;ugol.tupoy — тупой угол.

3-й вариант. Высота и средняя линия.

    \[diagonal^{'}=\sqrt{{visota}^2+{\frac{\left(n.osn.+v.osn.\right)}{4}}^2}.\]

4-й вариант. Высота и основания.

    \[diagonal^{'}=\sqrt{{visota}^2+{sr.liniya}^2}\]

5-й вариант. Площадь и острый угол между диагоналями.

    \[diagonal^{'}=\sqrt{\frac{2\cdot ploschad'}{{\sin \left(ugol\right)\ }}}.\]

Здесь представлены основные формулы для вычисления длины диагонали равнобокой трапеции. На самом деле можно вывести также формулу через среднюю линию, высоту и угол между диагоналями, через стороны трапеции и высоту, через высоту, основание и угол при нем и т.д.

ru.solverbook.com

Диагонали трапеции

Свойства диагоналей трапеции

  1. Отрезок, соединяющий середины диагоналей трапеции равен половине разности оснований
  2. Треугольники, образованные основаниями трапеции и отрезками диагоналей до точки их пересечения - подобны
  3. Треугольники, образованные отрезками диагоналей трапеции, стороны которых лежат на боковых сторонах трапеции - равновеликие (имеют одинаковую площадь)
  4. Если продлить боковые стороны трапеции в сторону меньшего основания, то они пересекутся в одной точке с прямой, соединяющей середины оснований
  5. Отрезок, соединяющий основания трапеции, и проходящий через точку пересечения диагоналей трапеции, делится этой точкой в пропорции, равной соотношению длин оснований трапеции
  6. Отрезок, параллельный основаниям трапеции, и проведенный через точку пересечения диагоналей, делится этой точкой пополам, а его длина равна 2ab/(a + b), где a и b - основания трапеции

Свойства отрезка, соединяющего середины диагоналей трапеции

Соединим середины диагоналей трапеции ABCD, в результате чего у нас появится отрезок LM.  Отрезок, соединяющий середины диагоналей трапеции, лежит на средней линии трапеции.

Данный отрезок параллелен основаниям трапеции.

Длина отрезка, соединяющего середины диагоналей трапеции, равна полуразности ее оснований.

LM = (AD - BC)/2 или LM = (a-b)/2

Свойства треугольников, образованных диагоналями трапеции

Треугольники, которые образованы основаниями трапеции и точкой пересечения диагоналей трапеции - являются подобными. Треугольники BOC и AOD являются подобными. Поскольку углы BOC и AOD являются вертикальными - они равны. Углы OCB и OAD являются внутренними накрест лежащими при параллельных прямых AD и BC (основания трапеции параллельны между собой) и секущей прямой AC, следовательно, они равны.  Углы OBC и ODA равны по той же самой причине (внутренние накрест лежащие).

Так как все три угла одного треугольника равны соответствующим углам другого треугольника, то данные треугольники подобны.

Что из этого следует?

Для решения задач по геометрии подобие треугольников используется следующим образом. Если нам известны значения длин двух соответствующих элементов подобных треугольников, то мы находим коэффициент подобия (делим одно на другое). Откуда длины всех остальных элементов соотносятся между собой точно таким же значением.

Свойства треугольников, лежащих на боковой стороне и диагоналях трапеции

Рассмотрим два треугольника, лежащих на боковых сторонах трапеции AB и CD. Это - треугольники AOB и COD. Несмотря на то, что размеры отдельных сторон у данных треугольников могут быть совершенно различны, но площади треугольников, образованных боковыми сторонами и точкой пересечения диагоналей трапеции равны, то есть треугольники являются равновеликими.

Свойства трапеции, достроенной до треугольника

Если продлить стороны трапеции в сторону меньшего основания, то точка пересечения сторон будет совпадать с прямой линией, которая проходит через середины оснований. 

Таким образом, любая трапеция может быть достроена до треугольника. При этом:

  • Треугольники, образованные основаниями трапеции с общей вершиной в точке пересечения продленных боковых сторон являются подобными
  • Прямая, соединяющая середины оснований трапеции, является, одновременно, медианой построенного треугольника

Свойства отрезка, соединяющего основания трапеции

Если провести отрезок, концы которого лежат на основаниях трапеции, который лежит на точке пересечения диагоналей трапеции (KN), то соотношенее составляющих его отрезков от стороны основания до точки пересечения диагоналей ( KO/ON ) будет равно соотношению оснований трапеции ( BC/AD ).

KO / ON = BC / AD

Данное свойство следует из подобия соответствующих треугольников (см. выше).

Свойства отрезка, параллельного основаниям трапеции

Если провести отрезок, параллельный основаниям трапеции и проходящий через точку пересечения диагоналей трапеции, то он будет обладать следующими свойствами:

  • Заданный отрезок (KM) делится точкой пересечения диагоналей трапеции пополам
  • Длина отрезка, проходящего через точку пересечения диагоналей трапеции и параллельного основаниям, равна KM = 2ab/(a + b)

Формулы для нахождения диагоналей трапеции

Далее приведены формулы, отображающие зависимость между сторонами, углами трапеции и величиной ее диагоналей. Эти формулы пригодятся для решения задач по геометрии на тему "диагонали трапеции"

Далее, в формулах используются следующие обозначения:

a, b - основания трапеции

c, d - боковые стороны трапеции

d1 d2 - диагонали трапеции

α β - углы при большем основании трапеции

Формулы нахождения диагоналей трапеции через основания, боковые стороны и углы при основании

 

Первая группа формул (1-3) отражает одно из основных свойств диагоналей трапеции:

1. Сумма квадратов диагоналей трапеции равна сумме квадратов боковых сторон плюс удвоенное произведение ее оснований. Данное свойство диагоналей трапеции может быть доказано как отдельная теорема

2. Данная формула получена путем преобразования предыдущей формулы. Квадрат второй диагонали переброшен через знак равенства, после чего из левой и правой части выражения извлечен квадратный корень.

3. Эта формула нахождения длины диагонали трапеции аналогична предыдущей, с той разницей, что в левой части выражения оставлена другая диагональ

Следующая группа формул (4-5) аналогична по смыслу и выражает аналогичное соотношение.

Группа формул (6-7) позволяет найти диагональ трапеции, если известны большее основание трапеции,  одна боковая сторона и угол при основании.

Формулы нахождения диагоналей трапеции через высоту

Примечание. В данном уроке приведено решение задач по геометрии о трапециях. Если Вы не нашли решение задачи по геометрии, интересующего Вас типа - задайте вопрос на форуме.

Задача. Диагонали трапеции ABCD (AD | | ВС) пересекаются в точке О. Найдите длину основания ВС трапеции, если основание АD = 24 см, длина АО = 9см, длина ОС = 6 см.

Решение. Решение данной задачи по идеологии абсолютно идентично предыдущим задачам.

Треугольники AOD и BOC являются подобными по трем углам - AOD и BOC являются вертикальными, а остальные углы попарно равны, поскольку образованы пересечением одной прямой и двух параллельных прямых.

Поскольку треугольники подобны, то все их геометрические размеры относятся между собой, как геометрически размеры известных нам по условию задачи отрезков AO и OC. То есть

AO / OC = AD / BC 9 / 6 = 24 / BC BC = 24 * 6 / 9 = 16

Ответ: 16 см

Задача. В трапеции ABCD известно, что AD=24, ВС=8, АС=13, BD=5√17. Найдите площадь трапеции.

Решение. Для нахождения высоты трапеции из вершин меньшего основания B и C опустим на большее основание две высоты. Поскольку трапеция неравнобокая - то обозначим длину AM = a, длину  KD = b (не путать с обозначениями в формуле нахождения площади трапеции). Поскольку основания трапеции параллельны, а мы опускали две высоты, перпендикулярных большему основанию, то MBCK - прямоугольник.

Значит AD = AM+BC+KD a + 8 + b = 24 a

profmeter.com.ua

В равнобедренной трапеции диагонали перпендикулярны

Если в равнобедренной трапеции диагонали перпендикулярны, при решении задачи будет полезен следующий теоретический материал.

1. Если в равнобедренной трапеции диагонали перпендикулярны, высота трапеции равна полусумме оснований.           

v-ravnobedrennoj-trapecii-diagonali-perpendikulyarny

 

Проведем  через точку C прямую CF, параллельную BD, и продлим прямую AD до пересечения с CF.

 

 

 

 

 

diagonali-ravnobokoj-trapecii-perpendikulyarny

    

 

 

 

 

 

 

 

 

Четырехугольник  BCFD — параллелограмм ( BC∥DF как основания трапеции, BD∥CF по построению). Значит, CF=BD, DF=BC и AF=AD+BC.  

Треугольник ACF прямоугольный (если прямая перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой прямой). Поскольку в равнобедренной трапеции диагонали равны, а CF=BD, то CF=AC, то есть треугольник ACF — равнобедренный с основанием AF. Значит, его высота CN является также медианой. А так как медиана прямоугольного треугольника, проведенная к гипотенузе, равна ее половине, то

    \[CN = \frac{1}{2}AF = \frac{{AD + BC}}{2},\]

что в общем виде можно записать как

    \[h = \frac{{a + b}}{2},\]

где h — высота трапеции, a и b — ее основания.

2. Если в равнобедренной трапеции диагонали перпендикулярны, то ее высота равна средней линии.

Так как средняя линия трапеции m равна полусумме оснований, то

    \[h = m.\]

3. Если в равнобедренной трапеции диагонали перпендикулярны, то площадь трапеции равна квадрату высоты трапеции (или квадрату полусуммы оснований, или квадрату средней линии).

Так как площадь трапеции находится по формуле

    \[S = \frac{{a + b}}{2} \cdot h\]

а высота, полусумма оснований и средняя линия равнобокой трапеции с перпендикулярными диагоналями равны между собой:

    \[h = \frac{{a + b}}{2} = m,\]

то

    \[S = {h^2}\]

    \[S = {(\frac{{a + b}}{2})^2}\]

    \[S = {m^2}.\]

4. Если в равнобедренной трапеции диагонали перпендикулярны, то квадрат ее диагонали равен половине квадрата суммы оснований, а также  удвоенному квадрату высоты и удвоенному квадрату средней линии.

Так как площадь выпуклого четырехугольника можно найти через его диагонали и угол между ними по формуле

    \[S = \frac{1}{2}{d_1}{d_2}\sin \varphi \]

sin 90º =1, и диагонали равнобедренной трапеции равны, то площадь равнобедренной трапеции, диагонали которой взаимно перпендикулярны, равна

    \[S = \frac{1}{2}{d^2}.\]

откуда

    \[\frac{1}{2}{d^2} = {(\frac{{a + b}}{2})^2} = {h^2} = {m^2},\]

    \[{d^2} = \frac{{{{(a + b)}^2}}}{2}.\]

www.uznateshe.ru



О сайте

Онлайн-журнал "Автобайки" - первое на постсоветском пространстве издание, призванное осветить проблемы радовых автолюбителей с привлечение экспертов в области автомобилестроения, автоюристов, автомехаников. Вопросы и пожелания о работе сайта принимаются по адресу: Онлайн-журнал "Автобайки"