Преобразование и упрощение более сложных выражений с корнями (алгебра 8 класс). Действия с корнями примеры решения

БЕСПЛАТНО ответим на Ваши вопросы
По лишению прав, ДТП, страховом возмещении, выезде на встречную полосу и пр. Ежедневно с 9.00 до 21.00
Москва и МО +7 (499) 938-51-97
С-Петербург и ЛО +7 (812) 467-32-86
Бесплатный звонок по России 8-800-350-23-69 доб.418

Преобразование и упрощение более сложных выражений с корнями (алгебра 8 класс)

Дополнительные сочинения

В начале урока мы повторим основные свойства квадратных корней, а затем рассмотрим несколько сложных примеров на упрощение выражений, содержащих квадратные корни.

Тема: Функция . Свойства квадратного корня

Урок: Преобразование и упрощение более сложных выражений с корнями

1. Повторение свойств квадратных корней

Вкратце повторим теорию и напомним основные свойства квадратных корней.

Свойства квадратных корней:

1. , следовательно, ;

2. ;

3. ;

4. .

2. Примеры на упрощение выражений с корнями

Перейдем к примерам использования этих свойств.

Пример 1. Упростить выражение .

Решение. Для упрощения число 120 необходимо разложить на простые множители:

. Квадрат суммы раскроем по соответствующей формуле:

.

Ответ. 11.

Пример 2. Упростить выражение .

Решение. Учтем, что данное выражение имеет смысл не при всех возможных значениях переменной, т. к. в данном выражении присутствуют квадратные корни и дроби, что приводит к «сужению» области допустимых значений. ОДЗ: ().

Приведем выражение в скобках к общему знаменателю и распишем числитель последней дроби как разность квадратов:

при.

Ответ. при.

Пример 3. Упростить выражение .

Решение. Видно, что вторая скобка числителя имеет неудобный вид и нуждается в упрощении, попробуем разложить ее на множители с помощью метода группировки.

. Для возможности выносить общий множитель мы упростили корни путем их разложения на множители. Подставим полученное выражение в исходную дробь:

. После сокращения дроби применяем формулу разности квадратов.

Ответ. 13.

3. Пример на избавление от иррациональности

Пример 4. Освободиться от иррациональности (корней) в знаменателе: а) ; б) .

Решение. а) Для того чтобы избавиться от иррациональности в знаменателе, применяется стандартный метод домножения и числителя и знаменателя дроби на сопряженный к знаменателю множитель (такое же выражение, но с обратным знаком). Это делается для дополнения знаменателя дроби до разности квадратов, что позволяет избавиться от корней в знаменателе. Выполним этот прием в нашем случае:

.

б) выполним аналогичные действия:

       

.

Ответ.; .

4. Пример на доказательство и на выделение полного квадрата в сложном радикале

Пример 5. Докажите равенство .

Доказательство. Воспользуемся определением квадратного корня, из которого следует, что квадрат правого выражения должен быть равен подкоренному выражению:

. Раскроем скобки по формуле квадрата суммы:

, получили верное равенство.

Доказано.

Пример 6. Упростить выражение .

Решение. Указанное выражение принято называть сложным радикалом (корень под корнем). В данном примере необходимо догадаться выделить полный квадрат из подкоренного выражения. Для этого заметим, что из двух слагаемых является претендентом на роль удвоенного произведения в формуле квадрата разности (разности, т. к. присутствует минус). Распишем его в виде такого произведения: , тогда на роль одного из слагаемых полного квадрата претендует , а на роль второго – 1.

. Подставим это выражение под корень:

. Модуль раскрывается в таком виде, т. к. .

Ответ..

На этом занятии мы заканчиваем тему «Функция . Свойства квадратного корня», а на следующем уроке начинаем новую тему «Действительные числа».

Список литературы

1. Башмаков М. И. Алгебра 8 класс. – М.: Просвещение, 2004.

2. Дорофеев Г. В., Суворова С. Б., Бунимович Е. А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.

3. Никольский С. М., Потапов М. А., Решетников Н. Н., Шевкин А. В. Алгебра 8 класс. Учебник для общеобразовательных учреждений. – М.: Просвещение, 2006.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Интернет-портал xenoid. ru .

2. Математическая школа .

3. Интернет-портал XReferat. Ru .

Домашнее задание

1. №357, 360, 372, 373, 382. Дорофеев Г. В., Суворова С. Б., Бунимович Е. А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.

2. Избавьтесь от иррациональности в знаменателе: а) , б) .

3. Упростите выражение: а) , б) .

4. Докажите тождество .

dp-adilet.kz

Корни и степени. Квадратный корень, кубический корень.

Степенью называется выражение вида .

Здесь  — основание степени,  — показатель степени.

Степень с натуральным показателем

Проще всего определяется степень с натуральным (то есть целым положительным) показателем.

По определению, .

Выражения «возвести в квадрат» и «возвести в куб» нам давно знакомы.Возвести число в квадрат — значит умножить его само на себя.

.

Возвести число в куб — значит умножить его само на себя три раза.

.

Возвести число в натуральную степень  — значит умножить его само на себя раз:

Степень с целым показателем

Показатель степени может быть не только натуральным (то есть целым положительным), но и равным нулю, а также целым отрицательным.

По определению,

.

Это верно для . Выражение  не определено.

Определим также, что такое степень с целым отрицательным показателем.

Конечно, все это верно для , поскольку на ноль делить нельзя.

Например,

Заметим, что при возведении в минус первую степень дробь переворачивается.

Показатель степени может быть не только целым, но и дробным, то есть рациональным числом. В статье «Числовые множества» мы говорили, что такое рациональные числа. Это числа, которые можно записать в виде дроби , где  — целое,  — натуральное.

Здесь нам понадобится новое понятие — корень -степени. Корни и степени — две взаимосвязанные темы. Начнем с уже знакомого вам арифметического квадратного корня.

Арифметический квадратный корень

Уравнение  имеет два решения:  и .

Это числа, квадрат которых равен .

А как решить уравнение ?

Если мы нарисуем график функции , то увидим, что и у этого уравнения есть два решения, одно из которых положительно, а другое отрицательно.

Но эти решения не являются целыми числами. Более того, они не являются рациональными. Для того чтобы записать эти решения, мы вводим специальный символ квадратного корня.

Арифметический квадратный корень из числа  — это такое неотрицательное число, квадрат которого равен .

Запомните это определение.

Арифметический квадратный корень обозначается .

Например,

Обратите внимание:

1) Квадратный корень можно извлекать только из неотрицательных чисел

2) Выражение всегда неотрицательно. Например, .

Перечислим свойства арифметического квадратного корня:

1.

2. 3.

Запомним, что выражение не равно . Легко проверить:

— получился другой ответ.

Кубический корень

Аналогично, кубический корень из  — это такое число, которое при возведении в третью степень дает число .

Например, , так как ;

, так как ;

, так как .

Обратите внимание, что корень третьей степени можно извлекать как из положительных, так и из отрицательных чисел.

Теперь мы можем дать определение корня -ной степени для любого целого .

Корень -ной степени

Корень -ной степени из числа  — это такое число, при возведении которого в -ную степень получается число .

Например,

Заметим, что корень третьей, пятой, девятой — словом, любой нечетной степени, — можно извлекать как из положительных, так и из отрицательных чисел.

Квадратный корень, а также корень четвертой, десятой, в общем, любой четной степени можно извлекать только из неотрицательных чисел.

Итак, — такое число, что . Оказывается, корни можно записывать в виде степеней с рациональным показателем. Это удобно.

По определению,

в общем случае .

Сразу договоримся, что основание степени больше .

Например,

Выражение по определению равно .

При этом также выполняется условие, что больше .

Например,

Запомним правила действий со степенями:

— при перемножении степеней показатели складываются

— при делении степени на степень показатели вычитаются

— при возведении степени в степень показатели перемножаются

Ты нашел то, что искал? Поделись с друзьями!

Покажем, как применяются эти формулы в заданиях ЕГЭ по математике:

1.

Внесли все под общий корень, разложили на множители, сократили дробь и извлекли корень.

2.

3.

Здесь мы записали корни в виде степеней и использовали формулы действий со степенями.

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)                        +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

ege-study.ru

Действия со степенями и корнями

1. При умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним:

.

Например, .

2. При делении степеней с одинаковыми основаниями показатели степеней вычитаются, а основание остаётся прежним:

.

Например, .

3. При возведении степени в степень показатели степеней перемножаются, а основание остаётся прежним:

.

Например, .

4. Степень произведения равна произведению степеней множителей:

.

Например, .

5. Степень частного равна частному степеней делимого и делителя:

.

Например, .

Пример 1. Найти значение выражения

.

Решение. В данном случае в явной форме ни одно из свойств степени с натуральным показателем применить нельзя, так как все степени имеют разные основания. Запишем некоторые степени в другом виде:

(степень произведения равна произведению степеней множителей),

(при умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним, при возведении степени в степень показатели степеней перемножаются, а основание остаётся прежним).

Теперь получим:

В данном примере были использованы первые четыре свойства степени с натуральным показателем.

Свойства степеней и корней интенсивно используются при упрощении выражений в задачах математического анализа, например, для нахождения производной параметрически заданной функции и производной функции, заданной неявно.

Имеют место следующие тождества:

1) ;

2) ;

3) .

Выполнить действия со степенями самостоятельно, а затем посмотреть решения

Пример 2. Найти значение выражения

.

Пример 3. Найти значение выражения

.

1. Корень k-й степени из произведения неотрицательных чисел равен произведению корней той же степени из сомножителей: , где (правило извлечения корня из произведения).

2. Если , то (правило извлечения корня из дроби).

3. Если , то (правило извлечения корня из корня).

4. Если , то (правило возведения корня в степень).

5. Если , то , где , т. е. показатель корня и показатель подкоренного выражения можно умножить на одно и то же число.

6. Если , то , т. е. большему положительному подкоренному выражению соответствует и большее значение корня.

7. Все указанные выше формулы часто применяются в обратном порядке (т. е. справа налево). Например:

(правило умножения корней),

(правило деления корней),

.

8. Правило вынесения множителя из-под знака корня. При .

9. Обратная задача - внесение множителя под знак корня. Например,

10. Уничтожение иррациональности в знаменателе дроби. Рассмотрим некоторые типичные случаи.

а) , так как .

Например, .

б)

Например,

в)

и т. д.

11. Применение тождеств сокращённого умножения к действиям с арифметическими корнями:

1) ;

2) ;

3)

Другие темы в блоке "Школьная математика"

function-x.ru

Обобщение понятия степени и решение примеров со степенями

Здравствуйте. Многие ученики испытывают сложности при решении заданий, в которых встречаются выражения с корнями. В данной статье я попытаюсь обобщить материал по темам "Радикал" и "Степень". Покажу как решать некоторые задания. Если у Вас во время прочтения статьи появятся вопросы, Вы можете записаться ко мне на занятие, я с радостью помогу Вам во всем разобраться, помогу с решением именно Ваших задач! 

1. Свойства степеней и корней

Степенью числа а с натуральным показателем n называется произведение n множителей, каждый из которых равняется а. Степень числа а с показателем n обозначают an, например:

В общем случае при n > 1  имеем

Число a называется основой степени, число n — показателем степени.

Приведем основные свойства действий со степенями.

Приведенные свойства обобщаются для любых показателей степени

Часто в вычислениях используются степени с рациональным показателем. При этом удобным оказалось такое обозначение:

Корнем n- ой степени из числа а называется число b, n- я степень которого равняется a:

Корень также называется радикалом.

Корень нечетной степени n всегда существует. Корень четной степени 2n из отрицательного числа не существует. Существуют два противоположных числа, которые являются корнями четной степени из положительного числа а > 0. Положительный корень n- ой степени из положительного числа называют арифметическим корнем.

Из формул (3), (4) вытекают такие свойства радикалов

Если степень корня n = 2, то показатель корня обычно не пишется. 

Пример 1.1. Найти значение выражения

Подкоренное выражение разложим на простые множители:

Пример 1.2. Упростить выражение

Имеем: 

 

Пример 1.3. Извлечь корень 

Имеем: 

Пример 1.4. Упростить выражение 

Поскольку при

2. Действия с радикалами

1) Преобразование корня по формуле  называется внесением множителя под знак радикала.

Пример 2.1. Внести множитель под знак корня 5√2.

Исходя из формулы (7) получим 

Пример 2.2. Внести множитель под знак радикала x√y  при x< 0.

Имеем равенство 

2) Преобразование корня исходя из формулы  называется вынесением множителя из-под знака радикала.

Пример 2.3. Вынести множитель из-под знака корня в выражении  

Получим: 

Пример 2.4. Вынести множитель из-под знака корня

Имеем: 

Пример 2.5. Вынести множитель из-под знака корня:

Радикалы вида , где a, b — рациональные числа, называются подобными. Их можно прибавлять и отнимать:

Пример 2.6. Упростить:

Пример 2.7. Сложить радикалы:

Пример 2.8. Выполнить действие:

Заметим, что равенство  не выполняется. В этом можно убедиться на таком примере:

Приведем примеры умножения радикалов.

Пример 2.9.

Аналогично освобождаются от кубических иррациональностей в знаменателе:

Рассмотрим более сложные примеры рационализации знаменателей:

Чтобы перемножить радикалы с разными степенями, их сначала превращают в радикалы с одинаковыми степенями.

Пример 2.10. Перемножим радикалы:

Во время умножения радикалов можно использовать формулы сокращенного умножения. Например:

Если радикалы находятся в знаменателе дроби, то, используя свойства радикалов, можно избавиться от иррациональности. 

Пример 2.11. Рационализируем знаменатели дробей

Выражения  называются сопряженными. Произведение сопряженных выражений не содержит радикалов:

Это свойство используется для рационализации знаменателей.

Пример 2.12. Избавиться от иррациональности в знаменателе:

Избавимся от иррациональности в знаменателе дроби:

3. Вычисление иррациональных выражений

С помощью свойств корней можно упрощать и вычислять иррациональные выражения. 

Пример 3.1. Вычислить

Выполним последовательно действия:

Пример 3.2. Вычислить:

Выполним действия.

Часто используется формула двойного радикала:

Пример 3.3. Исходя из формулы (8) находим:

Пример 3.4. Вычислить

Исходя из формулы (8) находим:

Окончательно получаем:

Аналогично вычисляются кубические корни. Имеем:

Возводим обе части равенства в куб:

Сравнивая выражения при √с, получаем однородную систему уравнений:

Поделив уравнение почленно, приходим к уравнению для z = y/x:

Пример 3.5. Вычислить значение радикала

После возведения в куб уравнения приходим к системе уравнений:

Поделив почленно первое уравнение на второе, получим уравнение для z= y/x:

По схеме Горнера находим корень z = - ½

Из системы уравнений и уравнения y/x = - ½ находим x = 2,  y = -1. Итак, 

Пример 3.6. Вычислить .

Возьмем .

Возведя обе части уравнения в куб, получаем откуда вытекает система уравнений

Система уравнений имеет очевидное решение x= 1, y= 1.

Поэтому .

Вычисляем радикал

Окончательно имеем a = - 1.

Пример 3.7. Вычислить

Поскольку 

Дальше имеем:

Итак, a = - 2.

Пример 3.8. Вычислить

Возведем уравнение в куб, воспользовавшись равенством .

Получили для x кубическое уравнение

или x3 – 3x – 18 = 0,

имеет корни 

Во множестве действительных чисел имеем корень x = 3.

4. Оценки для радикалов

Если 

Это неравенство можно использовать для доведения неровностей, которые содержат радикалы.

Пример 4.1. Доказать, что .

Возведя неравенство в шестую степень, получим очевидное неравенство

Можно приводить радикалы к одной и то й же самой степени :

Пример 4.2. Оценим  .

Поскольку

 

При преобразовании неравенств можно использовать символ V, понимая под ним знаки « > », « < », или « ». 

Пример 4.3. Какое число больше 

.

Поскольку 

На этом все. Напоминаю, что Вы можете записываться ко мне на занятия в расписании, я с радостью помогу Вам с любыми вопросами по математике или высшей математике.

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

blog.tutoronline.ru

Квадратные корни

Квадратные корни

Введение

В ходе решения некоторых математических задач приходится оперировать с квадратными корнями. Поэтому важно знать правила действий с квадратными корнями и научиться преобразовывать выражения, их содержащие. Цель – изучение правил действий с квадратными корнями и способов преобразования выражений с квадратными корнями.

Мы знаем, что некоторые рациональные числа выражаются бесконечными периодическими десятичными дробями, как, например, число 1/1998=0,000500500500… Но ничто не мешает вообразить и число, в десятичном разложении которого не обнаружится никакого периода. Такие числа называются иррациональными.

История иррациональных чисел восходит к удивительному открытию пифагорейцев еще в VI в. до н. э. А началось все с простого, казалось бы, вопроса: каким числом выражается длина диагонали квадрата со стороной 1?

Диагональ разбивает квадрат на 2 одинаковых прямоугольных треугольника, в каждом из которых она выполняет роль гипотенузы. Поэтому, как следует из теоремы Пифагора, длина диагонали квадрата равна

. Сразу же возникает соблазн достать микрокалькулятор и нажать клавишу извлечения квадратного корня. На табло мы увидим 1,4142135. Более совершенный калькулятор, выполняющий вычисления с высокой точностью покажет 1,414213562373. А с помощью современного мощного компьютера можно вычислить с точностью до сотен, тысяч, миллионов знаков после запятой. Но даже самый высокопроизводительный компьютер, сколько бы долго он ни работал, никогда не сможет ни рассчитать все десятичные цифры, ни обнаружить в них какой-либо период.

И хотя у Пифагора и его учеников компьютера не было, обосновали этот факт именно они. Пифагорейцы доказали, что у диагонали квадрата и его стороны общей меры (т.е. такого отрезка, который целое число раз откладывался бы и на диагонали, и на стороне) не существует. Следовательно, отношение их длин – число

– нельзя выразить отношением некоторых целых чисел m и n. А коль скоро это так, добавим мы, десятичное разложение числа не обнаруживает никакой регулярной закономерности.

По следам открытия пифагорейцев

Как доказать, что число

иррационально? Предположим, существует рациональное число m/n=. Дробь m/n будем считать несократимой, ведь сократимую дробь всегда можно привести к несократимой. Возведя обе части равенства, получим . Отсюда заключаем, что m – число четное, то есть m=2К. Поэтому и, следовательно, , или . Но тогда получим что и n четное число, а этого быть не может, поскольку дробь m/n несократима. Возникает противоречие.

Остается сделать вывод, что наше предположение неверно и рационального числа m/n, равного

не существует.

Зная время t , можно найти путь при свободном падении по формуле:

Решим обратную задачу.

Задача . Сколько секунд будет падать камень, сброшенный с высоты 122,5 м?

Чтобы найти ответ, нужно решить уравнение

Из него находим, что Теперь осталось найти такое положительное число t, что его квадрат равняется 25. Этим числом является 5, так как Значит, камень будет падать 5 с.

Искать положительное число по его квадрату приходится и при решении других задач, например при отыскании длины стороны квадрата по его площади. Введем следующее определение.

Определение . Неотрицательное число, квадрат которого равен неотрицательному числу а, называется квадратным корнем из а. Это число обозначают

Таким образом

Пример . Так как

Из отрицательных чисел нельзя извлекать квадратные корни, так как квадрат любого числа или положителен, или равен нулю. Например, выражение

не имеет числового значения.

В записи

знак называют знаком радикала (от латинского «радикс» – корень), а число а – подкоренным числом. Например, в записи подкоренное число равно 25. Так как Это означает, что квадратный корень из числа, записанного единицей и 2n нулями, равен числу, записываемому единицей и n нулями: = 10…0

2n нулей n нулей

Аналогично доказывается, что

2n нулей n нулей

Например,

Мы знаем, что не существует рационального числа, квадрат которого равен 2. Это означает, что

не может быть рациональным числом. Он является иррациональным числом, т.е. записывается в виде непериодической бесконечной десятичной дроби, причем первые десятичные знаки этой дроби имеют вид 1,414… Чтобы найти следующий десятичный знак, надо взять число 1.414х , где х может принимать значения 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, возвести по порядку эти числа в квадрат и найти такое значение х, при котором квадрат меньше, чем 2, но следующий за ним квадрат больше, чем 2. Таким значением является х=2. Далее повторяем то же самое с числами вида 1,4142х . Продолжая этот процесс, получаем одну за другой цифры бесконечной десятичной дроби, равной .

Аналогично доказывается существование квадратного корня из любого положительного действительного числа. Разумеется, последовательное возведение в квадрат весьма трудоемкое занятие, и потому существуют способы быстрее находить десятичные знаки квадратного корня. С помощью микрокалькулятора можно найти значение

с восемью верными цифрами. Для этого достаточно ввести в микрокалькулятор число а>0 и нажать клавишу – на экране высветится 8 цифр значения . В некоторых случаях приходится использовать свойства квадратных корней, которые мы укажем ниже.

Если точность, даваемая микрокалькулятором, недостаточна, можно воспользоваться способом уточнения значения корня, даваемым следующей теоремой.

Теорема. Если а – положительное число и – приближенное значение для по избытку, то

– приближенное значение для по недостатку .

Доказательство .

По условию x1 > и потому х12 >a,

2 = = a . Т.к. a a . Значит, а и - приближенное значение для по недостатку.

Аналогично доказывается, что если

– приближенное значение для по недостатку, то – приближенное значение по избытку.

mirznanii.com

Квадратный корень. Действия с квадратными корнями. Модуль. Сравнение квадратных корней

Факт 1.\(\bullet\) Возьмем некоторое неотрицательное число \(a\) (то есть \(a\geqslant 0\)). Тогда (арифметическим) квадратным корнем из числа \(a\) называется такое неотрицательное число \(b\), при возведении которого в квадрат мы получим число \(a\): \[\sqrt a=b\quad \text{то же самое, что }\quad a=b^2\] Из определения следует, что \(a\geqslant 0, b\geqslant 0\). Эти ограничения являются важным условием существования квадратного корня и их следует запомнить!Вспомним, что любое число при возведении в квадрат дает неотрицательный результат. То есть \(100^2=10000\geqslant 0\) и \((-100)^2=10000\geqslant 0\).\(\bullet\) Чему равен \(\sqrt{25}\)? Мы знаем, что \(5^2=25\) и \((-5)^2=25\). Так как по определению мы должны найти неотрицательное число, то \(-5\) не подходит, следовательно, \(\sqrt{25}=5\) (так как \(25=5^2\)).Нахождение значения \(\sqrt a\) называется извлечением квадратного корня из числа \(a\), а число \(a\) называется подкоренным выражением.\(\bullet\) Исходя из определения, выражения \(\sqrt{-25}\), \(\sqrt{-4}\) и т.п. не имеют смысла.  

Факт 2.Для быстрых вычислений полезно будет выучить таблицу квадратов натуральных чисел от \(1\) до \(20\): \[\begin{array}{|ll|} \hline 1^2=1 & \quad11^2=121 \\ 2^2=4 & \quad12^2=144\\ 3^2=9 & \quad13^2=169\\ 4^2=16 & \quad14^2=196\\ 5^2=25 & \quad15^2=225\\ 6^2=36 & \quad16^2=256\\ 7^2=49 & \quad17^2=289\\ 8^2=64 & \quad18^2=324\\ 9^2=81 & \quad19^2=361\\ 10^2=100& \quad20^2=400\\ \hline \end{array}\]

Факт 3.Какие действия можно выполнять с квадратными корнями?\(\bullet\) Сумма или разность квадратных корней НЕ РАВНА квадратному корню из суммы или разности, то есть \[\sqrt a\pm\sqrt b\ne \sqrt{a\pm b}\] Таким образом, если вам нужно вычислить, например, \(\sqrt{25}+\sqrt{49}\), то первоначально вы должны найти значения \(\sqrt{25}\) и \(\sqrt{49}\), а затем их сложить. Следовательно, \[\sqrt{25}+\sqrt{49}=5+7=12\] Если значения \(\sqrt a\) или \(\sqrt b\) при сложении \(\sqrt a+\sqrt b\) найти не удается, то такое выражение дальше не преобразуется и остается таким, как есть. Например, в сумме \(\sqrt 2+ \sqrt {49}\) мы можем найти \(\sqrt{49}\) – это \(7\), а вот \(\sqrt 2\) никак преобразовать нельзя, поэтому \(\sqrt 2+\sqrt{49}=\sqrt 2+7\). Дальше это выражение, к сожалению, упростить никак нельзя   \(\bullet\) Произведение/частное квадратных корней равно квадратному корню из произведения/частного, то есть \[\sqrt a\cdot \sqrt b=\sqrt{ab}\quad \text{и}\quad \sqrt a:\sqrt b=\sqrt{a:b}\] (при условии, что обе части равенств имеют смысл)Пример: \(\sqrt{32}\cdot \sqrt 2=\sqrt{32\cdot 2}=\sqrt{64}=8\);   \(\sqrt{768}:\sqrt3=\sqrt{768:3}=\sqrt{256}=16\);   \(\sqrt{(-25)\cdot (-64)}=\sqrt{25\cdot 64}=\sqrt{25}\cdot \sqrt{64}= 5\cdot 8=40\).   \(\bullet\) Пользуясь этими свойствами, удобно находить квадратные корни из больших чисел путем разложения их на множители.Рассмотрим пример. Найдем \(\sqrt{44100}\). Так как \(44100:100=441\), то \(44100=100\cdot 441\). По признаку делимости число \(441\) делится на \(9\) (так как сумма его цифр равна 9 и делится на 9), следовательно, \(441:9=49\), то есть \(441=9\cdot 49\).Таким образом, мы получили: \[\sqrt{44100}=\sqrt{9\cdot 49\cdot 100}= \sqrt9\cdot \sqrt{49}\cdot \sqrt{100}=3\cdot 7\cdot 10=210\] Рассмотрим еще один пример: \[\sqrt{\dfrac{32\cdot 294}{27}}= \sqrt{\dfrac{16\cdot 2\cdot 3\cdot 49\cdot 2}{9\cdot 3}}= \sqrt{ \dfrac{16\cdot4\cdot49}{9}}=\dfrac{\sqrt{16}\cdot \sqrt4 \cdot \sqrt{49}}{\sqrt9}=\dfrac{4\cdot 2\cdot 7}3=\dfrac{56}3\]\(\bullet\) Покажем, как вносить числа под знак квадратного корня на примере выражения \(5\sqrt2\) (сокращенная запись от выражения \(5\cdot \sqrt2\)). Так как \(5=\sqrt{25}\), то \[5\sqrt2=\sqrt{25}\cdot \sqrt2=\sqrt{25\cdot 2}=\sqrt{50}\] Заметим также, что, например,1) \(\sqrt2+3\sqrt2=4\sqrt2\),2) \(5\sqrt3-\sqrt3=4\sqrt3\)3) \(\sqrt a+\sqrt a=2\sqrt a\).

 

Почему так? Объясним на примере 1). Как вы уже поняли, как-то преобразовать число \(\sqrt2\) мы не можем. Представим, что \(\sqrt2\) – это некоторое число \(a\). Соответственно, выражение \(\sqrt2+3\sqrt2\) есть не что иное, как \(a+3a\) (одно число \(a\) плюс еще три таких же числа \(a\)). А мы знаем, что это равно четырем таким числам \(a\), то есть \(4\sqrt2\).  

Факт 4.\(\bullet\) Часто говорят “нельзя извлечь корень”, когда не удается избавиться от знака \(\sqrt {} \ \) корня (радикала) при нахождении значения какого-то числа. Например, извлечь корень из числа \(16\) можно, потому что \(16=4^2\), поэтому \(\sqrt{16}=4\). А вот извлечь корень из числа \(3\), то есть найти \(\sqrt3\), нельзя, потому что нет такого числа, которое в квадрате даст \(3\).Такие числа (или выражения с такими числами) являются иррациональными. Например, числа \(\sqrt3, \ 1+\sqrt2, \ \sqrt{15}\) и т.п. являются иррациональными.Также иррациональными являются числа \(\pi\) (число “пи”, приблизительно равное \(3,14\)), \(e\) (это число называют числом Эйлера, приблизительно оно равно \(2,7\)) и т.д.\(\bullet\) Обращаем ваше внимание на то, что любое число будет либо рациональным, либо иррациональным. А вместе все рациональные и все иррациональные числа образуют множество, называющееся множеством действительных (вещественных) чисел. Обозначается это множество буквой \(\mathbb{R}\).Значит, все числа, которые на данный момент мы знаем, называются вещественными числами.  

Факт 5.\(\bullet\) Модуль вещественного числа \(a\) – это неотрицательное число \(|a|\), равное расстоянию от точки \(a\) до \(0\) на вещественной прямой. Например, \(|3|\) и \(|-3|\) равны 3, так как расстояния от точек \(3\) и \(-3\) до \(0\) одинаковы и равны \(3\). \(\bullet\) Если \(a\) – неотрицательное число, то \(|a|=a\).Пример: \(|5|=5\); \(\qquad |\sqrt2|=\sqrt2\).   \(\bullet\) Если \(a\) – отрицательное число, то \(|a|=-a\).Пример: \(|-5|=-(-5)=5\); \(\qquad |-\sqrt3|=-(-\sqrt3)=\sqrt3\).Говорят, что у отрицательных чисел модуль “съедает” минус, а положительные числа, а также число \(0\), модуль оставляет без изменений.НО такое правило годится только для чисел. Если у вас под знаком модуля находится неизвестная \(x\) (или какая-то другая неизвестная), например, \(|x|\), про которую мы не знаем, положительная она, равна нулю или отрицательная, то избавиться от модуля мы не можем. В этом случае это выражение таким и остается: \(|x|\).   \(\bullet\) Имеют место следующие формулы: \[{\large{\sqrt{a^2}=|a|}}\] \[{\large{(\sqrt{a})^2=a}}, \text{ при условии } a\geqslant 0\] Очень часто допускается такая ошибка: говорят, что \(\sqrt{a^2}\) и \((\sqrt a)^2\) – одно и то же. Это верно только в том случае, когда \(a\) – положительное число или ноль. А вот если \(a\) – отрицательное число, то это неверно. Достаточно рассмотреть такой пример. Возьмем вместо \(a\) число \(-1\). Тогда \(\sqrt{(-1)^2}=\sqrt{1}=1\), а вот выражение \((\sqrt {-1})^2\) вообще не существует (ведь нельзя под знак корня помещать отрицательные числа!).Поэтому обращаем ваше внимание на то, что \(\sqrt{a^2}\) не равен \((\sqrt a)^2\)!   Пример: 1) \(\sqrt{\left(-\sqrt2\right)^2}=|-\sqrt2|=\sqrt2\), т.к. \(-\sqrt2<0\);

 

\(\phantom{00000}\) 2) \((\sqrt{2})^2=2\).   \(\bullet\) Так как \(\sqrt{a^2}=|a|\), то \[\sqrt{a^{2n}}=|a^n|\] (выражение \(2n\) обозначает четное число)То есть при извлечении корня из числа, находящегося в какой-то степени, эта степень уменьшается в два раза.Пример:1) \(\sqrt{4^6}=|4^3|=4^3=64\)2) \(\sqrt{(-25)^2}=|-25|=25\) (заметим, что если модуль не поставить, то получится, что корень из числа равен \(-25\); но мы помним, что по определению корня такого быть не может: у нас всегда при извлечении корня должно получаться положительное число или ноль)3) \(\sqrt{x^{16}}=|x^8|=x^8\) (так как любое число в четной степени неотрицательно)

 

Факт 6.Как сравнить два квадратных корня?\(\bullet\) Для квадратных корней верно: если \(\sqrt a<\sqrt b\), то \(a<b\); если \(\sqrt a=\sqrt b\), то \(a=b\).Пример:1) сравним \(\sqrt{50}\) и \(6\sqrt2\). Для начала преобразуем второе выражение в \(\sqrt{36}\cdot \sqrt2=\sqrt{36\cdot 2}=\sqrt{72}\). Таким образом, так как \(50<72\), то и \(\sqrt{50}<\sqrt{72}\). Следовательно, \(\sqrt{50}<6\sqrt2\).2) Между какими целыми числами находится \(\sqrt{50}\)?Так как \(\sqrt{49}=7\), \(\sqrt{64}=8\), а \(49<50<64\), то \(7<\sqrt{50}<8\), то есть число \(\sqrt{50}\) находится между числами \(7\) и \(8\).3) Сравним \(\sqrt 2-1\) и \(0,5\). Предположим, что \(\sqrt2-1>0,5\): \[\begin{aligned} &\sqrt 2-1>0,5 \ \big| +1\quad \text{(прибавим единицу к обеим частям)}\\[1ex] &\sqrt2>0,5+1 \ \big| \ ^2 \quad\text{(возведем обе части в квадрат)}\\[1ex] &2>1,5^2\\ &2>2,25 \end{aligned}\] Видим, что мы получили неверное неравенство. Следовательно, наше предположение было неверным и \(\sqrt 2-1<0,5\).Заметим, что прибавление некоторого числа к обеим частям неравенства не влияет на его знак. Умножение/деление обеих частей неравенства на положительное число также не влияет на его знак, а умножение/деление на отрицательное число меняет знак неравенства на противоположный!Возводить обе части уравнения/неравенства в квадрат можно ТОЛЬКО ТОГДА, когда обе части неотрицательные. Например, в неравенстве из предыдущего примера возводить обе части в квадрат можно, в неравенстве \(-3<\sqrt2\) нельзя (убедитесь в этом сами)!   \(\bullet\) Следует запомнить, что \[\begin{aligned} &\sqrt 2\approx 1,4\\[1ex] &\sqrt 3\approx 1,7 \end{aligned}\] Знание приблизительного значения данных чисел поможет вам при сравнении чисел!   \(\bullet\) Для того, чтобы извлечь корень (если он извлекается) из какого-то большого числа, которого нет в таблице квадратов, нужно сначала определить, между какими “сотнями” оно находится, затем – между какими “десятками”, а потом уже определить последнюю цифру этого числа. Покажем, как это работает, на примере.Возьмем \(\sqrt{28224}\). Мы знаем, что \(100^2=10\,000\), \(200^2=40\,000\) и т.д. Заметим, что \(28224\) находится между \(10\,000\) и \(40\,000\). Следовательно, \(\sqrt{28224}\) находится между \(100\) и \(200\).Теперь определим, между какими “десятками” находится наше число (то есть, например, между \(120\) и \(130\)). Также из таблицы квадратов знаем, что \(11^2=121\), \(12^2=144\) и т.д., тогда \(110^2=12100\), \(120^2=14400\), \(130^2=16900\), \(140^2=19600\), \(150^2=22500\), \(160^2=25600\), \(170^2=28900\). Таким образом, мы видим, что \(28224\) находится между \(160^2\) и \(170^2\). Следовательно, число \(\sqrt{28224}\) находится между \(160\) и \(170\).Попробуем определить последнюю цифру. Давайте вспомним, какие однозначные числа при возведении в квадрат дают на конце \(4\)? Это \(2^2\) и \(8^2\). Следовательно, \(\sqrt{28224}\) будет заканчиваться либо на 2, либо на 8. Проверим это. Найдем \(162^2\) и \(168^2\):\(162^2=162\cdot 162=26224\)\(168^2=168\cdot 168=28224\).Следовательно, \(\sqrt{28224}=168\). Вуаля!

shkolkovo.net

Иррациональные выражения. Преобразование иррациональных выражений

Выражения, содержащие корень, который нельзя извлечь, называются иррациональными или радикальными.

Примеры:

– иррациональные выражения

Сложение и вычитание

При сложении или вычитании иррациональных выражений их пишут одно за другим с сохранением их знаков.

Примеры:

В некоторых случаях с помощью преобразования можно сделать иррациональные выражения подобными, то есть имеющими одинаковые показатели корней и подкоренные числа (или выражения), а затем сделать приведение.

Примеры:

Умножение и деление

При умножении иррациональных выражений с одинаковыми показателями корней перемножаются их подкоренные числа или выражения:

При делении иррациональных выражений с одинаковыми показателями корней подкоренное число или выражение делимого делится на подкоренное число или выражение делителя:

Примеры:

Возведение в степень

Чтобы возвести в степень иррациональное выражение, следует возвести в степень подкоренное число или выражение:

Примеры:

При возведении в n-ю степень знак корня отбрасывается, так как возведение числа (или выражения) в n-ю степень и извлечение из него корня n-ой степени – это взаимно сокращающиеся действия:

Извлечение корня

Чтобы извлечь корень из иррационального выражения, следует показатели корней перемножить:

, так как

Пример:

С помощью таких преобразований можно упростить извлечение корней 4-й, 6-й, 8-й, 9-й и т. п. степеней из чисел.

Примеры:

Сокращение корней

Величина иррационального выражения не изменится, если показатель корня и подкоренного выражения умножить или разделить на одно и то же число:

так как извлечение корня и возведение в степень – это взаимно сокращающиеся действия, если их показатели равны.

На этом свойстве основано сокращение корней и приведение их к одному показателю.

Сокращение корней – это деление показателей корня и подкоренного числа (или выражения) на одно и то же число, если оно является общим множителем для всех показателей.

Примеры:

Приведение корней к одному показателю

Приведение корней к общему показателю имеет большое сходство с приведением дробей к общему знаменателю. Рассмотрим два способа:

  1. Показатели корней не имеют общих множителей. В этом случае показатель каждого корня и его подкоренное число (или выражение) умножают на произведение остальных корней.

    Рассмотрим три выражения:

    ,

    так как у данных показателей нет общего множителя, то просто перемножаем все показатели между собой, полученный результат и станет общим показателем. После приведения к общему показателю выражения будут иметь следующий вид:

  2. Показатели корней имеют общий множитель. В этом случае надо найти НОК показателей и умножить показатель каждого корня на недостающий множитель.

    Рассмотрим два выражения:

    ,

    НОК (4, 6) = 12, значит для первого выражения дополнительным множителем будет 3, а для второго 2. После приведения к общему показателю выражения будут иметь следующий вид:

При умножении и делении иррациональных выражений с разными показателями, их приводят к общему показателю, а затем уже умножают или делят их подкоренные числа или выражения.

Примеры:

naobumium.info



О сайте

Онлайн-журнал "Автобайки" - первое на постсоветском пространстве издание, призванное осветить проблемы радовых автолюбителей с привлечение экспертов в области автомобилестроения, автоюристов, автомехаников. Вопросы и пожелания о работе сайта принимаются по адресу: Онлайн-журнал "Автобайки"