Как построить спираль архимеда. Черчение спираль архимеда

БЕСПЛАТНО ответим на Ваши вопросы
По лишению прав, ДТП, страховом возмещении, выезде на встречную полосу и пр. Ежедневно с 9.00 до 21.00
Москва и МО +7 (499) 938-51-97
С-Петербург и ЛО +7 (812) 467-32-86
Бесплатный звонок по России 8-800-350-23-69 доб.418

Построение Спираль Архимеда. Наглядный чертеж.

Построение Спираль Архимеда начинается с представления что это такое?

Представляет собой плоскую кривую линию, движущаяся равномерно с постоянным углом по кривой траектории от центра до радиуса окружности.

Алгоритм построение Спираль Архимеда:

1.) Построение начинается с окружности необходимого диаметра.

2.) Делится окружность на 12 равных частей и нумеруется.

3.) Горизонтальная линия также делится на 12 равных отрезков.

4.) Чертятся вспомогательные окружности, таким образом, чтобы начало имело с номера на горизонтальной прямой и заканчивалось на отрезке окружности с той же цифрой.

5.) Полученные точки соединяются плавной линией (с помощью инструмента лекало).

Смотрите чертеж Спираль Архимеда. Диаметр окружности 12 см.

Также посмотрите видео:

chertegik.ru

Построение спиралей в AutoCAD | САПР-журнал

Предлагаю сегодня рассмотреть процесс построения плоских кривых в AutoCAD на примере логарифмической и архимедовой спиралей.

Несмотря на то, что функций построения кривых по аналитическим выражениям в AutoCAD нет, построить можно все, что угодно с помощью обычных приемов черчения.

 Логарифмическая спираль

  • Строим отрезок длиной 100 мм

 

  • Создаем круговой массив из отрезка. Чем больше лучей мы построим, тем более точную спираль мы получим в итоге. Построим 20 лучей через 18 градусов

  •  Для облегчения построений включим режим привязки Нормаль, который позволяет строить перпендикуляр из точки к объекту

 

  • С помощью полилинии (не отрезка! это важно!) начинаем строить спираль — начинаем от наружной точки луча, и строим перпендикуляр к соседнему лучу. Для удобства можно изменить цвет и толщину линии спирали

 

 

  • Строим перпендикуляры к соседним лучам до тех пор, пока не достигнем нужно результата

 

 

  • Сглаживаем нашу полилинию, чтобы получить гладкую кривую. Для этого запускаем команду редактирования полилинии ПОЛРЕД (_PEDIT), выбираем полилинию и опцию Сгладить. Логарифмическая спираль готова!

Архимедова спираль

  • Строим массив лучей также, как и в предыдущем примере.
  • Строим концентрические окружности, начиная от самой большой, радиус которой совпадает с размером луча. Остальные окружности строим с отступом в 5 мм. Чем меньше шаг окружностей, тем более точная получится спираль

  •  Для удобства построений отключаем все привязки, кроме Пересечение

  •  С помощью полилинии начинаем построения — начинаем от внешней крайней точки и идем к пересечению соседнего луча с меньшей окружностью (т.е. строим диагональ условного прямоугольника, образованного двумя соседними окружностями и лучами).

  • Продолжаем построения до тех пор, пока не достигнем центра

  •  Сглаживаем полилинию также, как и в предыдущем случае.

Готовая архимедова спираль

Другие интересные материалы

sapr-journal.ru

Построение спирали Архимеда

Построение спирали Архимеда начинают с построения окружности радиусом, равным шагу спирали, командой Окружность. Из центра окружности О командой Отрезок проводят горизонтальную линию, равную шагу спирали Архимеда ОА. Окружность и отрезок делят на 12 равных частей. Отрезок можно разделить на 12 равных частей с помощью команды Разбить кривую на n частей. Через точки деления отрезка ОА с помощью команды Эквидистанта копируют окружности: их должно быть 12. С помощью команды Копия по окружности создают полярный массив из разделенного на 12 частей шага спирали (рис.3.50).

Рис. 3.50. Построение спирали Архимеда

Точки пересечения шагов и окружностей радиусов 1/12, 2/12, 3/12 и т.д. соединяют ломаной линией с помощью команды Отрезок, начиная от центра спирали (точка О), учитывая направление вращения объекта. Командой NURBS получают линию спирали Архимеда (рис.3.51).

Для построения большего числа витков спирали Архимеда, строят окружность радиусом, равным двум шагам спирали, или трем шагам, и, соответственно, делят два шага на 24 части, 2,5 шага — на 30 частей.

Рис. 3.51. Спираль Архимеда, построенная с помощью команды NURBS

Построение двухцентрового завитка

Вначале строят горизонтальную вспомогательную прямую. Затем на ней откладывают отрезок. Из первого центра строят окружность радиусом О1О2, из второго центра строят окружность радиусом 2О1О2 (рис.3.52).

Рис. 3.52. Построение двухцентрового завитка окружностями

После построения необходимого количества окружностей лишние их части удаляют с помощью команды Усечь кривую (рис. 3.53).

Проставляют радиальные размеры к полуокружностям, убедившись, что радиус увеличивается в два раза для каждой последующей окружности.

Рис. 3.53. Двухцентровый завиток

Работа с текстом

Команда Текст позволяет создать текстовую надпись в чертеже или фрагменте. Каждая надпись может состоять из произвольного количества строк.

Для вызова команды нажмите кнопку Текст на инструментальной панели Обозначения.

После вызова команды КОМПАС переключается в режим работы с текстом. При этом изменяются количество и названия команд главного меню, а также состав Компактной панели.

С помощью группы переключателей Размещение выберите расположение текста относительно точки привязки.

В поле Угол можно ввести угол наклона строк текста к оси Х текущей системы координат.

Укажите точку привязки текста.

Введите нужное количество строк, заканчивая набор каждой из них нажатием клавиши <Enter>.

Вы можете изменить установленные по умолчанию параметры текста с помощью элементов управления, расположенных на вкладке Форматирование Панели свойств, а также вставить различные специальные объекты с помощью элементов вкладкиВставка.

Чтобы зафиксировать изображение, нажмите кнопку Создать объект на Панели специального управления.

Порядок выполнения лабораторной работы

Создайте новый фрагмент.

Постройте спираль Архимеда согласно задания.

Постройте завиток по индивидуальному варианту.

Сохраните файл.

Проставьте необходимые размеры.

Внесите обозначения центра, шага спирали с помощью команды Текст.

Создайте во фрагменте надпись, содержащую ФИО студента, группа, № лабораторной работы, № варианта, дата создания.

studfiles.net

Спирали Архимеда - Великие физики

«Кривой жизни» называл спираль Гёте. В природе форму спирали Архимеда имеют большинство раковин. Семена подсолнечника расположены по спирали. Спираль можно увидеть в кактусах, ананасах. Ураган закручивается спиралью. По спирали разбегается стадо оленей. Двойной спиралью закручена молекула ДНК. Даже галактики сформированы по принципу спирали.

Представим себе циферблат часов с длинной стрелкой. Стрелка движется по окружности циферблата. А по стрелке в это время перемещается с постоянной скоростью маленький жучок. Траектория движения жучка представляет собой спираль Архимеда.

Спираль, названная именем Архимеда, была открыта им в III веке до нашей эры.

Построение спирали Архимеда

По определению самого Архимеда: «Спираль – это траектория равномерного движения точки по равномерно вращающемуся вокруг своего начала лучу».

Чтобы понять, как получается спираль Архимеда, возьмём окружность и разделим её на одинаковое количество частей (в нашем примере на 8). На такое же количество частей (8) разделим и радиус окружности. Из центра окружности проведём лучи через точки деления окружности и обозначим их, как 11, 21, 31, 41, 51, 61, 71, 81.

На первом луче отложим одно деление радиуса и обозначим точку I. На втором луче отложим два деления радиуса и обозначим точку II. На третьем луче отложим три деления радиуса и обозначим точку III. Таким же образом получим точки IV, V, VI, VII, VIII. Соединив обозначенные точки кривой линией, получим спираль Архимеда. Если продолжать построение дальше, то в точке IX будет отложено 8+1 частей радиуса. И т.д.

Оказывается, спираль Архимеда тесно связана с последовательностью чисел Фибоначчи. Что же общего между этими, на первый взгляд, абсолютно разными понятиями?

Последовательность Фибоначчи

Ряд Фибоначчи – это последовательность чисел, в котором каждое последующее число равно сумме двух предыдущих. Выглядит последовательность Фибоначчи так: 1, 1, 2, 5, 8, 13, 21, 34, 55, 89...  А отношение каждого последующего числа к предыдущему в этом ряду чисел равно 1,618... Это число называют числом Ф.

Однако, без понятия «золотого сечения» мы не сможем проследить связь числового ряда Фибоначчи со спиралью Архимеда.

Золотая пропорция

Представьте себе, что вы разделили отрезок прямой на две неравные части так, что весь отрезок относится к большей части, как большая часть относится к меньшей. Это и есть пропорция "золотого сечения" или «золотая пропорция». Отношение большей стороны к меньшей в золотом сечении равно 1,618. Как видим, такому же числу равняется и отношение последующего числа к предыдущему в ряду Фибоначчи.

Построим прямоугольник, стороны которого будут соотноситься в золотой пропорции. То есть отношение большей стороны прямоугольника к меньшей равно 1,618. Прямоугольник с такими сторонами называется «золотой прямоугольник». Отсечём от этого прямоугольник квадрат, сторона которого равна меньшей стороне прямоугольника. Оказывается, оставшийся  прямоугольник тоже будет «золотым». Если и от него отсечь квадрат со стороной, равной меньшей стороне уже этого прямоугольника, то и оставшийся прямоугольник будет «золотым». И так далее. Если добавлять квадрат по более длинной стороне прямоугольника, то этот процесс можно продолжать до бесконечности. Оказалось, что длины сторон этих квадратов равны соседним числам в последовательности Фибоначчи: 1, 1, 2, 3, 5, 8, 13, 21, 34 … И, соответственно, отношение стороны последующего квадрата к стороне предыдущего также равно 1,618.

Соединив кривой угловые точки этих квадратов, получим спираль Архимеда.

Средневековый математик Лука Пачиоли назвал «золотую пропорцию» Божественной пропорцией. Человеческий глаз воспринимает пропорцию золотого сечения в качестве гармоничной и красивой.  И человек очень давно начал использовать «золотую пропорцию» в своей деятельности. Так, в пирамидах Гизе отношение длины основания к высоте равно 1,618. Такие же пропорции и у мексиканских пирамид. Золотую пропорцию использовал и Леонардо да Винчи в своих творениях. Может, потому они так привлекательны и совершенны?

Спираль Архимеда в природе

В природе спираль Архимеда встречается на каждом шагу.

Паук плетёт паутину по спирали.

Головка подсолнуха состоит из спиралей Архимеда, одни из которых закручены по часовой стрелке, другие - против. Так, в головке среднего размера 34 спирали одного направления и 55 другого. Узнаёте? Это же числа ряда Фибоначчи.

Сосновые шишки и колючки кактусов также имеют спирали, направленные по часовой, или против часовой стрелки. Причём число этих спиралей всегда будут равно соседним числам ряда Фибоначчи. Например, у сосновой шишки спиралей 5 и 8, у ананаса 8 и 13.

Применение спирали Архимеда

В III веке да нашей эры Архимед на основе своей спирали изобрёл винт, который успешно применяли для передачи воды в оросительные каналы из водоёмов, расположенных ниже. Позже на основе винта Архимеда создали шнек («улитку»). Его очень известная разновидность – винтовой ротор в мясорубке. Шнек используют в механизмах для перемешивания материалов различной консистенции. В технике нашли применение антенны в виде спирали Архимеда. Самоцентрирующийся патрон выполнен по спирали Архимеда. Звуковые дорожки на CD и DVD дисках также имеют форму спирали Архимеда.

Спираль Архимеда нашла практическое применение в математике, технике, архитектуре, машиностроении.

www.phisiki.com

Построение спирали Архимеда. Сакральная геометрия. Энергетические коды гармонии

Построение спирали Архимеда

Заданный шаг t спирали Архимеда делят на несколько, например на восемь, равных частей. Из конца О отрезка проводят окружность R = t и делят ее на столько же равных частей, на сколько был разделен шаг t.

На первом луче путем проведения дуги радиусом O1 из центра О получают точку I, на втором луче путем проведения дуги радиусом O2 получают точку II и т. д.

После того как на всех лучах будут получены точки I, II, III, IV, V, VI, VII и VIII, проводят через них кривую – спираль Архимеда.

Распределительный кулачок. Очертания боковых сторон его выполняют по спирали Архимеда

Уравнение Архимедовой спирали в полярной системе координат записывается так:

где k – смещение точки M по лучу r, при повороте на угол, равный одному радиану. Повороту прямой на 2 соответствует смещение a = |BM| = |MA| = 2 k. Число a – называется шагом спирали. Уравнение Архимедовой спирали можно переписать так:

При вращении луча против часовой стрелки получается правая спираль, при вращении – по часовой стрелке – левая спираль.

Обе ветви спирали (правая и левая) описываются одним уравнением:

Положительным значениям соответствует правая спираль, отрицательным – левая спираль. Если точка M будет двигаться по прямой UV из отрицательных значений через центр вращения O и далее в положительные значения, вдоль прямой UV, то точка M опишет обе ветви спирали.

Луч OV, проведенный из начальной точки O, пересекает спираль бесконечное число раз – точки B, M, A и т.д. Расстояния между точками B и M, M и A равны шагу спирали ? = 2k?. При раскручивании спирали, расстояние от точки O до точки M стремится к бесконечности, при этом шаг спирали остается постоянным (конечным), то есть чем дальше от центра, тем ближе витки спирали, по форме, приближаются к окружности.

Закон семи, или «закон октав» – закон изменения вибраций в учении Г.И. Гурджиева, изложенный П.Д. Успенским.

В своей книге Успенский говорит, что вся Вселенная состоит из вибраций. Обычно мы считаем, что они бесконечны и непрерывны, то есть начавшись, они длятся долго по восходящей или нисходящей. Но это не так. Астрология считает день – отдельной сущностью. Так и вибрации не непрерывны. Первоначальная сила вибрации действует не непрерывно, а как бы попеременно, изменяя свое качество. «Сила импульса действует, не изменяя своей природы, и вибрация развивается правильно лишь в течение некоторого времени, которое определяется природой импульса, средой, условиями и т.д. Но в известный момент в этом процессе происходит особого рода перемена, и вибрации перестают, так сказать, повиноваться импульсу, на короткое время замедляются и до известной степени меняют свою природу и направление. После этого замедления как в процессе возрастания, так и в процессе затухания вибрации возвращаются в свое прежнее русло и в течение некоторого времени возрастают или затухают однообразно – до известного момента, когда в их развитии вновь происходит задержка. В этой связи знаменательно, что периоды однообразных колебаний не равны. А периоды замедления вибраций не симметричны: один из них короче, другой длиннее».

Закон октав получил свое название за стройную организацию по нотам музыкальной октавы. Между нотами октавы первой тональности – до мажор – интервалы выстраиваются неравномерно. «До»-«ре» (большая секунда, 1 тон), «ре»-«ми» (большая секунда, 1 тон), «ми»-«фа» (малая секунда, 0,5 тона), «фа»-«соль» (большая секунда, 1 тон), «соль»-«ля» (большая секунда, 1 тон), «ля»-«си» (большая секунда, 1 тон), «си»-«до» (малая секунда, 0,5 тона).

Клавиатура, отражение «закона октав»

Беннетт формулирует это так: «Закон октав утверждает принцип, при помощи которого можно определить, будет ли тот или иной процесс завершен с сохранением изначального напряжения или нет. При этом нет никакой гарантии, что под воздействием всегда присутствующих разнообразных внешних сил удастся сохранить направление этого процесса. Нельзя так же заранее предсказать, удастся ли довести процесс до завершения, без потери формы или содержания».

Поделитесь на страничке

Следующая глава >

esoterics.wikireading.ru

Как построить спираль архимеда

Спираль Архимеда строят, чтобы передать траекторию точки, которая движется равномерно-поступательно по радиусу вращающегося равномерно круга. Траектория такой точки может сделать нагляднее чертеж некоторых механизмов или движение объектов на схеме.

Вам понадобится

  • - лист бумаги;
  • - угольник;
  • - карандаш;
  • - циркуль;
  • - лекало;
  • - ластик;
  • - калькулятор.

Инструкция

  • Отметьте на чертеже точку, которая является центром спирали Архимеда. Обозначьте центр буквой O.
  • Постройте из центра спирали окружность, радиус которой равен шагу спирали. Шаг спирали Архимеда равен расстоянию, которое проходит точка по поверхности круга за один его полный оборот.
  • В начертательной геометрии спираль Архимеда относится к лекальным кривым. Она строится с помощью лекал, соединяющих точки на окружности. Чтобы получить точки построения, разделите окружность на несколько равных частей с помощью прямых линий. Например, на 8.
  • Пронумеруйте для удобства прямые линии, разделяющие окружность по направлению вращения круга.
  • Разделите радиус построенной окружности на то количество, на которое разделена окружность с помощью прямых линий. С помощью циркуля или линейки разделите последнюю в нумерации прямую на получившееся значение отметками. Разделить нужно только отрезок между центром окружности O и точкой пересечения прямой окружности.
  • Пронумеруйте получившиеся отметки, начиная с самой близкой к центру окружности. Вы можете использовать цифры или буквы в алфавитном порядке.
  • С помощью циркуля начертите дугу из центра окружности O. Дуга начинается от прямой линии, которая разделена отметками и проводится до прямой линии под номером 1. Обозначьте точку, в которой дуга соединяется с прямой 1 цифрой 1. Аналогично постройте следующую дугу от размеченной прямой до прямой под номером 2. Обозначьте точку соединения цифрой 2 и далее отметьте таким способом точки на всех прямых разделяющих окружность.
  • С помощью лекала соедините центр окружности с первой точкой. Затем соедините первую точку со второй и так соедините все отмеченные точки. Вы получите первый виток спирали Архимеда. Старайтесь соединять точки как можно ровнее. Чтобы получить спираль Архимеда более высокой точности разделите окружность на большее число равных частей и постройте соответствующее число дуг.

completerepair.ru

Архимедова спираль | Математика, которая мне нравится

История спирали Архимеда

Архимедова спираль была открыта (правильно, Вы угадали!) Архимедом. Это произошло в III веке до н.э., когда он экспериментировал с компасом. Он тянул стрелку компаса с постоянной скоростью, вращая сам компас по часовой стрелке. Получившаяся кривая была спиралью, которая сдвигались на ту же величину, на которую поворачивался компас, и между витками спирали сохранялось одно и то же расстояние.

Использование архимедовой спирали в древности

Архимедову спираль использовали как наилучший способ определения площади круга. С ее помощью был улучшен древний греческий метод нахождения площади круга через измерение длины окружности. Спираль дала возможность более точного измерения длины окружности, а следовательно, и площади круга. Однако вскоре, когда Архимед попытался вычислить более точно значение , которое упрощало нахождение площади круга, было доказано, что спираль для этого не подходит.

Что такое обобщенная Архимедова спираль?

Обобщенная Архимедова спираль определяется как кривая, которая задается в полярных координатах уравнением (далее положим ). Спираль Архимеда, в частности, принадлежит множеству обобщенных Архимедовых спиралей.

Название спирали

Значение

Спираль Архимеда

1

Гиперболическая спираль

-1

Спираль Ферма

2

Литуус (lituus)

-2

Lituus – загнутый авгурский посох, жезл.

Общий вид в полярных координатах:

Спираль Архимеда:

Гиперболическая спираль:

Спираль Ферма:

Литуус:

Параметризация спирали Архимеда

Начнем с уравнения спирали .

Воспользуемся теоремой Пифагора

– радиус окружности).

Также нам понадобятся формулы

   

Возведем уравнение спирали в квадрат:

   

Теперь аналогично выразим :

   

Вид параметризованной спирали:

Спирали в реальной жизни

В технике нашли широкое применение плоские спиральные антенны, в том числе и антенны, имеющие вид Архимедовой спирали (http://library.tuit.uz/lectures/afu/anten_fider_ustr/lecture_11.htm):

http://online.redwoods.cc.ca.us/instruct/darnold/calcproj/sp06/leviowen/HistoryOfArchimedes.doc

hijos.ru



О сайте

Онлайн-журнал "Автобайки" - первое на постсоветском пространстве издание, призванное осветить проблемы радовых автолюбителей с привлечение экспертов в области автомобилестроения, автоюристов, автомехаников. Вопросы и пожелания о работе сайта принимаются по адресу: Онлайн-журнал "Автобайки"