Все, что нужно знать об окружности. Чему равна дуга окружности


Длина дуги окружности. Центральный угол окружности. Дуга большого круга.

В той статье мы узнаем что такое дуга окружности, центральный угол, измерение дуги окружности.

Дуга окружности

Дуга - это любая связанная часть окружности круга. На рисунке ниже часть окружности от \(M\) до \(N\) образует дугу. Она называется \(\smile\) \(MN\).

Дуга может быть малой дугой, полукругом или большой дугой. Полукруг - это дуга, равная половине круга. Малая дуга - это дуга, которая меньше полукруга. Большая дуга - это дуга, которая больше полукруга.

Центральный угол Центральный угол - это угол, вершина которого находится в центре окружности. Например угол \(∠NAM\):

 

Дуга круга, угол

На приведенной выше диаграмме центральный угол для дуги \(MN\) равен \(45°\).

Сумма центральных углов в любой окружности равна \(360°\). Мера полуокружности равна \(180°\).

Мера малой дуги равна мере центрального угла, который перехватывает дугу. Можно также сказать, что мера малой дуги равна мере центрального угла, который подтягивается дугой. На диаграмме ниже мера дуги \(MN\) равна \(45°\):

 

Мера главной дуги равна \(360°\).

 

Больше уроков и заданий по математике вместе с преподавателями нашей онлайн-школы "Альфа". Запишитесь на пробное занятие уже сейчас!

Запишитесь на бесплатное тестирование знаний!

myalfaschool.ru

Все что нужно знать об окружности

Эта статья содержит минимальный набор сведений об окружности, необходимый для успешной сдачи ЕГЭ по математике.

Окружностью называется множество точек, расположенных на одинаковом  расстоянии от данной точки, которая называется центром окружности.

Для любой точки , лежащей на окружности выполняется равенство ( Длина отрезка равна радиусу окружности.

Отрезок, соединяющий две точки окружности называется хордой.

Хорда, проходящая через центр окружности называется диаметром окружности ().

Длина окружности:

Площадь круга:

Дуга окружности:

Часть окружности, заключенная между двумя ее точками называется дугой окружности. Две точки окружности определяют две дуги. Хорда  стягивает две дуги: и . Равные хорды стягивают равные дуги.

Угол между двумя радиусами называется центральным углом:

Чтобы найти длину дуги , составляем пропорцию:

а) угол дан в градусах:

Отсюда

б) угол дан в радианах:

Отсюда

Диаметр, перпендикулярный хорде, делит эту хорду и дуги, которые она стягивает пополам:

Если  хорды и окружности пересекаются в точке , то произведения отрезков хорд, на которые они делятся точкой равны между собой:

Касательная к окружности.

Прямая, имеющая с окружностью одну общую точку называется касательной к окружности. Прямая, имеющая с окружностью две общие точки называется секущей.

Касательная к окружности перпендикулярна радиусу, проведенному к  точке касания.

Если из данной точки  проведены к окружности две касательные, то отрезки касательных  равны между собой и центр окружности лежит на биссектрисе угла с вершиной в этой точке:

Если из данной точки проведены к окружности касательная и секущая, то квадрат длины отрезка касательной  равен произведению  всего отрезка секущей на его внешнюю часть:

Следствие: произведение всего отрезка одной секущей на его внешнюю часть равно произведению всего отрезка другой секущей на его внешнюю часть:

Углы в окружности.

Градусная мера центрального угла равна градусной мере дуги, на которую он опирается:

∠ ⌣

 

Угол, вершина которого лежит на окружности, а стороны содержат хорды, называется вписанным углом.  Вписанный угол измеряется половиной дуги, на которую он опирается:

∠∠

Вписанный угол, опирающийся на диаметр, прямой:

∠∠∠

Вписанные углы, опирающиеся на одну дугу, равны:

∠∠∠

 

Вписанные углы, опирающиеся на одну хорду равны или их сумма равна

∠∠

∠∠∠

Вершины треугольников с заданным основанием и равными углами при вершине лежат на одной окружности:

Угол между двумя хордами (угол с вершиной внутри окружности) равен полусумме угловых величин дуг окружности, заключенных внутри данного угла и внутри вертикального угла.

∠ ∠∠( ⌣ ⌣ )

Угол между двумя секущими (угол с вершиной вне окружности) равен полуразности угловых величин дуг окружности, заключенных внутри угла.

∠ ∠∠( ⌣ ⌣ )

 Вписанная окружность.

Окружность называется вписанной в многоугольник, если она касается его сторон. Центр вписанной окружности лежит в точке пересечения биссектрис углов многоугольника.

Не во всякий многоугольник можно вписать окружность.

Площадь многоугольника, в который вписана окружность можно найти по формуле

,

здесь - полупериметр многоугольника, - радиус вписанной окружности.

Отсюда радиус вписанной окружности равен

Если в выпуклый четырехугольник вписана окружность, то суммы длин противоположных сторон равны. Обратно: если в выпуклом четырехугольнике суммы длин противоположных сторон равны, то в четырехугольник можно вписать окружность:

В любой треугольник можно вписать окружность, притом только одну. Центр вписанной окружности лежит в точке пересечения биссектрис внутренних углов треугольника.

Радиус вписанной окружности равен . Здесь

Описанная окружность.

Окружность называется описанной около многоугольника, если она проходит через все вершины многоугольника. Центр описанной окружности лежит в точке пересечения серединных перпендикуляров сторон многоугольника. Радиус вычисляется как радиус окружности, описанной около треугольника, определенного любыми тремя вершинами данного многоугольника:

Около четырехугольника можно описать окружность тогда и только тогда, когда сумма его противоположных углов равна .

∠+∠=∠+∠

Около любого треугольника можно описать окружность, притом только одну. Ее центр лежит в точке пересечения серединных перпендикуляров сторон треугольника:

Радиус описанной окружности вычисляется по формулам:

Где - длины сторон треугольника, - его площадь.

Теорема Птолемея

Во вписанном четырехугольнике произведение диагоналей равно сумме произведений его противоположных сторон:

ege-ok.ru

Найдите длину большей дуги окружности

 

 

Геометрия. Окружности

 

Задача 10 (ОГЭ - 2015)

 

На окружности с центром O отмечены точки A и B так, что ∠ AOB = 18°. Длина меньшей дуги AB равна 5. Найдите длину большей дуги окружности.

 

Решение

∠ AOB = 18°. Вся окружность составляет 360°. Поэтому ∠ AOB составляет 18/360 = 1/20 окружности.

Значит, и меньшая дуга AB составляет 1/20 всей окружности, поэтому большая дуга - это остальная часть, т.е. 19/20 окружности.

1/20 окружности соответствует длине дуги, равной 5. Тогда длина большей дуги равна 5*19 = 95.

 

Ответ : 95.

 

Задача 10 (ОГЭ - 2015)

 

На окружности с центром O отмечены точки A и B так, что ∠ AOB = 40°. Длина меньшей дуги AB равна 50. Найдите длину большей дуги окружности.

 

Решение

∠ AOB = 40°. Вся окружность составляет 360°. Поэтому ∠ AOB составляет 40/360 = 1/9 окружности.

Значит, и меньшая дуга AB составляет 1/9 всей окружности, поэтому большая дуга - это остальная часть, т.е. 8/9 окружности.

1/9 окружности соответствует длине дуги, равной 50. Тогда длина большей дуги равна 50*8 = 400.

 

Ответ: 400.

 

Задача 10 (ГИА - 2014)

 

Длина хорды окружности равна 72, а расстояние от центра окружности до этой хорды равно 27. Найдите диаметр окружности.

 

Решение

AB = 72/2 = 36.

По теореме Пифагора из прямоугольного треугольника AOB получим:

AO2 = OB2+AB2,

AO2 = 272+362 = 729+1296 = 2025,

R = AO = 45.

Тогда диаметр равен 2R = 2*45 = 90.

 

Ответ: 90.

 

 

Задача 10 (ГИА - 2014)

 

Точка O - центр окружности, на которой лежат точки A, B и C. Известно, что ∠ABC = 134° и ∠OAB = 75°. Найдите угол BCO. Ответ дайте в градусах.

 

Решение

∠ABC - вписанный, а значит равен половине дуги, на которую опирается. Поэтому большая дуга AC = 2*134 = 268°.

Тогда дуга ABC = 360° - 268° =92°.

∠AOC = 92°,так как он является центральным углом и опирается на дугу ABC.

Сумма углов в выпуклом четырехугольнике равна 360°, откуда получаем:

∠BCO = 360° - (134°+75°+92°) = 59°.

 

Ответ: 59.

 

 

1 2

mathexam.ru

Длина дуги окружности. Радианная мера угла [wiki.eduVdom.com]

Найдем длину дуги окружности радиуса R, отвечающей центральному углу в n° (рис.1).

Рис.1

Развернутому углу соответствует длина полуокружности $\pi R$. Следовательно, углу в 1° соответствует дуга длины $\frac{\pi R}{180}$ , а углу в n° соответствует дуга длины $$ l = \frac{\pi R}{180}n \,\,\, (8) $$ Например, длина дуги окружности радиуса 12 м, отвечающей центральному углу в 30°, есть $$ l = \frac{12\pi}{180} \bullet = 2\pi \approx 6 \text{(м)} $$

Пример 1. По данной хорде к найти длину ее дуги, если она соответствует центральному углу в 60° (рис.2).

Рис.2

Решение. Так как АО = ВО = R(R — радиус окружности) и ∠ АОВ = 60°, то треугольник АОВ равносторонний: R = АВ = к. Теперь согласно формуле (8) имеем: $$ l = \frac{\pi R}{180} \bullet 60 = \frac{\pi k}{3} $$ Радианной мерой угла называется отношение длины соответствующей дуги к радиусу окружности. Из формулы для длины дуги окружности следует, что $$ \frac{l}{R} = \frac{\pi}{180}n $$ , т.е. радианная мера угла получается из градусной умножением на $\frac{\pi}{180}$. В частности, радианная мера угла 180° равна $\pi$, радианная мера прямого угла равна $\frac{\pi}{2}$.

Единицей радианной меры углов является радиан. Угол в один радиан — это центральный угол, у которого длина дуги равна радиусу (рис.3).

Рис.3

Градусная мера угла в один радиан равна $\frac{180^{\circ}}{\pi} = 57°$ .

Пример 2. Найти радианные меры углов параллелограмма ABCD, если ∠ A = 36°.

Решение. Радианная мера угла А равна $36° \bullet \frac{\pi}{180°} = \frac{\pi}{5}$ ,а радианная мера угла В равна к $\pi - \frac{\pi}{5} = \frac{4\pi}{5}$ , так как в параллелограмме сумма углов, прилежащих к одной стороне, равна 180° (теорема 1). Наконец, радианные меры углов C и D соответственно равны $\frac{\pi}{5}$ и $\frac{4\pi}{5}$ (в параллелограмме противоположные углы равны).

wiki.eduvdom.com

Чему равна длина дуги окружности

Чему равна длина дуги окружности:

Дуга - это часть окружности, ограниченная двумя любыми точками. По сути, у нас всегда получаются две дуги с одной и другой стороны круга.

Если через две точки можно провести диаметр окружности, то дуги будут называться полуокружностями (половинками круга).

Угол с вершиной в центре - это центральный угол. Градусная мера дуги равна градусной мере центрального угла. Т.е. например, для полуокружности с развернутым углом в 180° и дуга будет 180°.

Сумма градусных мер двух дуг (всего круга) равна 360° (сумма двух полуокружностей по 180°).

Если центральный угол меньше развернутого, то дуга внутри этого угла меньше полуокружности (б), другая дуга, соответственно, больше полуокружности (в).

Если дуга меньше полуокружности, то проще измерить сам угол. Если дуга больше полуокружности, то проще измерить внутренний угол и вычесть его из 360°.

Например, на рис. в ∠AMB = 360° - ∠ALB

Редактировать этот урок и/или добавить задание и получать деньги постоянно* Добавить свой урок и/или задания и получать деньги постоянно

Добавить новость и получить деньги

Добавить анкету репетитора и получать бесплатно заявки на обучение от учеников

uchilegko.info



О сайте

Онлайн-журнал "Автобайки" - первое на постсоветском пространстве издание, призванное осветить проблемы радовых автолюбителей с привлечение экспертов в области автомобилестроения, автоюристов, автомехаников. Вопросы и пожелания о работе сайта принимаются по адресу: Онлайн-журнал "Автобайки"