Округление натуральных чисел. 5 округляется в большую или меньшую сторону

БЕСПЛАТНО ответим на Ваши вопросы
По лишению прав, ДТП, страховом возмещении, выезде на встречную полосу и пр. Ежедневно с 9.00 до 21.00
Москва и МО +7 (499) 938-51-97
С-Петербург и ЛО +7 (812) 467-32-86
Бесплатный звонок по России 8-800-350-23-69 доб.418

Как округлять числа правильно и где в жизни это умение может стать полезным

Многие люди интересуются, как округлять числа. Эта необходимость часто возникает у людей, которые свою жизнь связывают с бухгалтерией или другими видами деятельности, где требуются расчеты. Округление может производиться до целых, десятых и так далее. И необходимо знать, как это делать правильно, чтобы расчеты были более менее точными.

А что такое вообще круглое число? Это то, которое заканчивается на 0 (по большей части). В обыденной жизни умение округлять числа значительно облегчает походы по магазинам. Стоя у кассы, можно приблизительно прикинуть общую стоимость покупок, сравнить, сколько стоит килограмм одноименного товара в различных по весу пакетах. С числами, приведенными к удобной форме, легче производить устные расчеты, не прибегая к помощи калькулятора.

Зачем округляются числа?

Любые цифры человек склонен округлять в тех случаях, когда нужно выполнять более упрощенные операции. Например, дыня весит 3,150 килограммов. Когда человек будет рассказывать своим знакомым о том, сколько граммов имеет южный плод, он может прослыть не очень интересным собеседником. Значительно лаконичнее звучат фразы типа "Вот я купил трехкилограмовую дыню" без вникания во всякие ненужные детали.

Интересно, что даже в науке нет необходимости всегда иметь дело с максимально точными числами. А если речь идет о периодических бесконечных дробях, которые имеют вид 3,33333333...3, то это становится невозможным. Поэтому самым логичным вариантом будет обычное округление их. Как правило, результат после этого искажается незначительно. Итак, как округлять числа?

Несколько важных правил при округлении чисел

Итак, если вы захотели округлить число, важно понимать основные принципы округления? Это операция изменения десятичной дроби, направленная на уменьшение количества знаков после запятой. Чтобы осуществлять данное действие, необходимо знать несколько важных правил:

  1. Если число нужного разряда находится в пределах 5-9, округление осуществляется в большую сторону.
  2. Если число нужного разряда находится в пределах 1-4, округление производится в меньшую сторону.

Например, у нас есть число 59. Нам его нужно округлить. Чтобы это сделать, надо взять число 9 и добавить к нему единицу, чтобы получилось 60. Вот и ответ на вопрос, как округлять числа. А теперь рассмотрим частные случаи. Собственно, мы разобрались, как округлить число до десятков с помощью этого примера. Теперь осталось всего лишь использовать эти знания на практике.

Как округлить число до целых

Очень часто случается так, что имеется необходимость округлить, например, число 5,9. Данная процедура не составляет большого труда. Нужно для начала опустить запятую, и перед нашим взором предстает при округлении уже знакомое нам число 60. А теперь ставим запятую на место, и получаем 6,0. А поскольку нули в десятичных дробях, как правило, опускаются, то получаем в итоге цифру 6.

Аналогичную операцию можно производить и с более сложными числами. Например, как округлять числа типа 5,49 до целых? Здесь все зависит от того, какие цели вы поставите перед собой. Вообще, по правилам математики, 5,49 - это все-таки не 5,5. Поэтому округлить его в большую сторону нельзя. Но можно его округлить до 5,5, после чего уже законным становится округление до 6. Но такая уловка не всегда срабатывает, так что нужно быть предельно осторожным.

Как правильно округлять числа после запятой до десятых?

В принципе, выше уже был рассмотрен пример правильного округления числа до десятых, поэтому сейчас важно отобразить только основной принип. По сути, все происходит приблизительно таким же образом. Если цифра, которая находится на второй позиции после запятой, находится в пределах 5-9, то она вообще убирается, а стоящая перед ней цифра увеличивается на один. Если же меньше 5, то данная цифра убирается, а предыдущая остается на своем месте.

Например, при округлении числа 4,59 до 4,6 цифра "9" уходит, а к пятерке прибавляется единица. А вот при округлении 4,41 единица опускается, а четверка остается в незименном виде.

Как используют маркетологи неумение массового потребителя округлять цифры?

Оказывается, большая часть людей на свете не имеет привычки оценить реальную стоимость продукта, что активно эксплуатируют маркетологи. Все знают слоганы акций типа "Покупайте всего за 9,99". Да, мы сознательно понимаем, что это уже по сути десять долларов. Тем не менее наш мозг устроен так, что воспринимает только первую цифру. Так что нехитрая операция приведения числа в удобный вид должно войти в привычку.

Очень часто округление позволяет лучше оценить промежуточные успехи, выражающиеся в численной форме. Например, человек стал зарабатывать 550 долларов в месяц. Оптимист скажет, что это почти 600, пессимист - что это чуть больше 500. Вроде бы разница есть, но мозгу приятнее "видеть", что объект достиг чего-то большего (или наоборот).

Можно привести огромное количество примеров, когда умение округлять оказывается невероятно полезным. Важно проявлять изобретательность и по возможности на загружаться ненужной информацией. Тогда успех будет незамедлительным.

fb.ru

Правило округления чисел

 

В приближенных вычислениях зачастую приходится округлять некоторые числа, как приближенные, так и точные, то есть убирать одну или несколько конечных цифр. Для того чтобы обеспечить наибольшую близость отдельного округленного числа к округляемому числу, следует соблюдать некоторые правила.

Первое правило

Если первая из отделяемых цифр больше, чем число 5, то последняя из оставляемых цифр усиливается, иначе говоря, увеличивается на единицу. Усиление так же предполагается и тогда, когда первая из убираемых цифр равна 5, а за ней имеется одна или некоторое количество значащих цифр.

Число 25,863 округлённо записывается как – 25,9. В данном случае цифра 8 будет усилена до 9, так как первая отсекаемая цифра 6, больше чем 5.

Число 45,254 округлённо записывается как – 45,3. Здесь цифра 2 будет усилена до 3, так как первая отсекаемая цифра равна 5, а за ней следует значащая цифра 1.

Второе правило

В случае если первая из отсекаемых цифр меньше чем 5, то усиления не производится.

Число 46,48 округлённо записывается как – 46. Число 46 наиболее близко к округляемому числу, чем 47.

Третье правило

Если отсекается цифра 5, а за ней не имеется значащих цифр, то округление выполняется на ближайшее четное число, другими словами, последняя оставляемая цифра остаётся неизменной, если она четная, и усиливается в случае, если она нечетная.

Число 0,0465 округлённо записывается как – 0,046. В данном случае усиления не делается, так как последняя оставляемая цифра 6 является чётной.

Число 0,935 округлённо записывается как – 0,94. Последняя оставляемая цифра 3 усиливается, так как она является нечётной.

Примеры округления чисел:

6,527 → 6,5 2,195 → 2,2 0,950 → 1,0 0,850 → 0,8
0,456 → 0,5 1,450 → 1,4 4,851 → 4,9 0,05 → 0,0

simple-math.ru

Правила округления

В некоторых случаях, точное число при делении определенной суммы на конкретное число невозможно определить в принципе. Например, при делении 10 на 3, у нас получается 3,3333333333…..3, то есть, данное число невозможно использовать для подсчета конкретных предметов и в других ситуациях. Тогда данное число следует привести к определенному разряду, например, к целому числу или к числу с десятичным разрядом. Если мы приведем 3,3333333333…..3 к целому числу, то получим 3, а приводя   3,3333333333…..3 к числу с десятичным разрядом, получим 3,3.

Правила округления

Что такое округление? Это отбрасывание нескольких цифр, которые являются последними в ряду точного числа. Так, следуя нашему примеру, мы отбросили все последние цифры, чтобы получить целое число (3) и отбросили цифры, оставив только разряды десятков (3,3). Число можно округлять до сотых и тысячных, десятитысячных и прочих чисел. Все зависит от того, насколько точное число необходимо получить. Например, при изготовлении медицинских препаратов, количество каждого из ингредиентов лекарства берется с наибольшей точностью, поскольку даже тысячная грамма может привести к летальному исходу. Если же необходимо подсчитать, какая успеваемость учеников в школе, то чаще всего используется число с десятичным или с сотым разрядом.

Рассмотрим иной пример, в котором применяются правила округления. Например, имеется число 3,583333, которое необходимо округлить до тысячных – после округления, за запятой у нас должно остаться три цифры, то есть результатом станет число 3,583. Если же это число округлять до десятых, то у нас получится не 3,5, а 3,6, поскольку после «5» стоит цифра «8», которая приравнивается уже к «10» во время округления. Таким образом, следуя правилам округления чисел, необходимо знать, если цифры больше «5», то последняя цифра, которую необходимо сохранить, будет увеличена на 1. При наличии цифры, меньшей, чем «5», последняя сохраняемая цифра остается неизменной. Такие правила округления чисел применяются независимо от того, до целого числа или до десятков, сотых и т.д. необходимо округлить число.

В большинстве случаев, при необходимости округления числа, в котором последняя цифра «5», этот процесс выполняется неправильно. Но существует еще и такое правило округления, которое касается именно таких случаев. Рассмотрим на примере. Необходимо округлить число 3,25 до десятых. Применяя правила округления чисел, получим результат 3,2. То есть, если после «пяти» нет цифры или стоит ноль, то последняя цифра остается неизменной, но только при условии, что она является четной – в нашем случае «2» - это четная цифра. Если бы нам необходимо было выполнить округление 3,35, то результатом бы стало число 3,4. Поскольку, в соответствии с правилами округления, при наличии нечетной цифры перед «5», которую необходимо убрать, нечетная цифра увеличивается на 1. Но только при условии, что после «5» нет значащих цифр. Во мно

elhow.ru

Правила округления | Математика

В приближенных вычислениях часто приходится округлять числа как приближенные, так и точные, т. е. отбрасывать одну или несколько последних цифр. Чтобы обеспечить наибольшую близость округленного числа к округляемому, соблюдаются следующие правила.

Правило 1. Если первая из отбрасываемых цифр больше чем 5, то последняя из сохраняемыхцифр усиливается, т. е. увеличивается на единицу. Усиление совершается и тогда, когда первая из отбрасываемых цифр равна 5, а за ней есть одна или несколько значащих цифр. (О случае, когда за отбрасываемой пятеркой нет цифр, см. ниже, правило 3.)

Пример 1. Округляя число 27,874 до трех значащих цифр, пишем 27,9. Третья цифра 8 усиленадо 9, так как первая отбрасываемая цифра 7 больше чем 5. Число 27,9 ближе к данному, чем неусиленное округленное число 27,8.

Пример 2. Округляя число 36,251 до первого десятичного знака, пишем 36,3. Цифра десятых 2 уси-лена до 3, так как первая отбрасываемая цифра равна 5, а за ней есть значащая цифра 1. Число 36,3 ближе к данному (хотя и незначительно), чем неусиленное число 36,2.

Правило 2. Если первая из отбрасываемых цифр меньше чем 5, то усиления не делается.

Пример 3. Округляя число 27,48 до единиц, пишем 27. Это число ближе к данному, чем 28.

Правило 3. Если отбрасывается цифра 5, а за ней нет значащих цифр, то округление производитсяна ближайшее четное число, т. е. последняя сохраняемая цифра оставляется неизменной, если она четная, и усиливается, если она нечетная. Почему применяется это правило, сказано ниже (см. замечание).

Пример 4. Округляя число 0,0465 до третьего десятичного знака, пишем 0,046. Усиления не делаем, так как последняя сохраняемая цифра 6 — четная. Число 0,046 столь же близко к данному, как 0,047.

Пример 5. Округляя число 0,935 до второго десятичного знака, пишем 0,94. Последняя сохраняемая цифра 3 усиливается, так как она нечетная.

Пример 6. Округляя числа 6,527; 0,456; 2,195; 1,450; 0,950; 4,851; 0,850; 0,05до первого десятичного знака, получаем:

                                       6,5; 0,5; 2,2; 1,4; 1,0; 4,9; 0,8; 0,0.

Замечание. Применяя правило 3 к округлению одного числа, мы не увеличиваем точность округления .Но при многочисленных округлениях избыточные числа будут встречатьсяпримерно столь же часто, как недостаточные. Взаимная компенсация погрешностей обеспечит наибольшую точность результата.

Правило 3 можно изменить и применять всегда округление на ближайшее нечетное число. Точность будет та же, но четные цифры удобнее, чем нечетные.

 

ibrain.kz

Округление чисел. Правила округления чисел и приближенное значение.

Округление мы часто используем в повседневной жизни. Если расстояние от дома до школы будет 503 метра. Мы можем сказать, округлив значение, что расстояние от дома до школы 500 метров. То есть мы приблизили число 503 к более легко воспринимающемуся числу 500. Например, булка хлеба весит 498 грамм, то можно сказать округлив результат, что булка хлеба весит 500 грамм.

Округление – это приближение числа к более “легкому” числу для восприятия человека.

В итоге округления получается приближенное число. Округление обозначается символом ≈, такой символ читается “приближённо равно”.

Можно записать 503≈500 или 498≈500.

Читается такая запись, как “пятьсот три приближенно равно пятистам” или   “четыреста девяносто восемь приближенно равно пятистам”.

Разберем еще пример:

4471≈4000                          4571≈5000

4371≈4000                          4671≈5000

4271≈4000                          4771≈5000

4171≈4000                          4871≈5000

4071≈4000                          4971≈5000

В данном примере было произведено округление чисел до разряда тысяч. Если посмотреть закономерность округления, то увидим, что в одном случае числа округляются в меньшую сторону, а в другом – в большую. После округления все остальные числа после разряда тысяч заменили на нули.

Правила округления чисел:

1) Если округляемая цифра равна 0, 1, 2, 3, 4, то цифра разряда до которого идет округление не меняется, а остальные числа заменяются нулями.

2) Если округляемая цифра равна 5, 6, 7, 8, 9, то цифра разряда до которого идет округление становиться на 1 больше, а остальные числа заменяются нулями.

Например:

1) Выполните округление до разряда десятков числа 364.

Разряд десятков в данном примере это число 6. После шестерки стоит число 4. По правилу округления цифра 4 разряд десятков не меняет. Записываем вместо 4 нуль. Получаем:

364≈360

2) Выполните округление до разряда сотен числа 4 781.

Разряд сотен в данном примере это число 7. После семерки стоит цифра 8, которая влияет на то измениться ли разряд сотен или нет. По правилу округления цифра 8 увеличивает разряд сотен на 1, а остальные цифры заменяем нулями. Получаем:

4781≈4800

3) Выполните округление до разряда тысяч числа 215 936.

Разряд тысяч в данном примере это число 5. После пятерки стоит цифра 9, которая влияет на то измениться ли разряд тысяч или нет. По правилу округления цифра 9 увеличивает разряд тысяч на 1, а остальные цифры заменяются нулями. Получаем:

215936≈216000

4) Выполните округление до разряда десятков тысяч числа 1 302 894.

Разряд тысяч в данном примере это число 0. После нуля стоит цифра 2, которая влияет на то измениться ли разряд десятков тысяч или нет. По правилу округления цифра 2 разряд десятков тысяч не меняет, заменяем на нуль этот разряд и все разряды младшие разряды. Получаем:

1302894≈1300000

Если точное значение числа неважно, то значение числа округляют и можно выполнять вычислительные операции с приближенными значениями. Результат вычисления называют прикидкой результата действий.

Например: 598⋅23≈600⋅20≈12000 сравним с 598⋅23=13754

Прикидкой результата действий пользуются для того, чтобы быстро посчитать ответ.

Примеры на задания по теме округление:

Пример №1:Определите до какого разряда сделано округление:а) 3457987≈3500000  б)4573426≈4573000 в)16784≈17000Вспомним какие бывают разряды на числе 3457987.

7 – разряд единиц,

8 – разряд десятков,

9 – разряд сотен,

7 – разряд тысяч,

5 – разряд десятков тысяч,

4 – разряд  сотен тысяч,3 – разряд миллионов.Ответ: а) 3 457 987≈3 500 000 разряд сотен тысяч б) 4 573 426≈4 573 000 разряд тысяч в)167 841≈170 000 разряд десятков тысяч.

Пример №2:Округлите число до разрядов 5 999 994: а) десятков б) сотен в) миллионов.Ответ: а) 5 999 994≈5 999 990 б) 5 999 994≈6 000 000 (т.к. разряды сотен, тысяч, десятков тысяч, сотен тысяч цифра 9, каждый разряд увеличился на 1) 5 999 994≈6 000 000.

tutomath.ru

Как округлить числа до целых?

Примеры. Округлить до целых: 1) 12,5;   2) 28,49;   3) 0,672;  4) 547,96;   5) 3,71. Решение. Подчеркиваем цифру, стоящую в разряде единиц (целых) и смотрим на цифру, стоящую за ней. Если это цифра 0, 1, 2, 3 или 4, то подчеркнутую цифру оставляем без изменения, а все цифры после нее отбрасываем. Если же за подчеркнутой цифрой стоит цифра 5 или 6 или 7 или 8 или 9, то подчеркнутую цифру увеличим на единицу. 1) 12,5≈13; 2) 28,49≈28; 3) 0,672≈1; 4) 547,96≈548; 5) 3,71≈4. Округлить до десятых: 6) 0, 246;   7) 41,253;   8 ) 3,81;   9) 123,4567;  10) 18,962. Решение. Подчеркиваем цифру, стоящую в разряде десятых, а затем поступаем согласно правилу: все стоящие после подчеркнутой цифры отбросим. Если за подчеркнутой цифрой была цифра 0 или 1 или 2 или 3 или 4, то подчеркнутую цифру не изменяем. Если за подчеркнутой цифрой шла цифра 5 или 6 или 7 или 8 или 9, то подчеркнутую цифру увеличим на 1. 6) 0, 246≈0,2; 7) 41,253≈41,3; 8 ) 3,81≈3,8; 9) 123,4567≈123,5; 10) 18,962≈19,0.  За девяткой стоит шестерка, поэтому, девятку увеличиваем на 1. (9+1=10) нуль пишем, 1 переходит в следующий разряд и будет 19. Просто 19 мы в ответе записать не можем, так как должно быть понятно, что мы округляли до десятых — цифра в разряде десятых должна быть. Поэтому, ответ: 19,0. Округлить до сотых: 11) 2, 045;   12) 32,093;   13) 0, 7689;   14)  543, 008;  15)  67, 382. Решение. Подчеркиваем цифру в разряде сотых и, в зависимости от того, какая цифра стоит после подчеркнутой, оставляем подчеркнутую цифру без изменения (если за ней 0, 1, 2, 3 или 4) или  увеличиваем подчеркнутую цифру на 1 (если за ней стоит 5, 6, 7, 8 или 9). 11) 2, 045≈2,05; 12) 32,093≈32,09; 13) 0, 7689≈0,77; 14)  543, 008≈543,01; 15)  67, 382≈67,38.

<a href="/" rel="nofollow" title="15907216:##:1OjIQmv">[ссылка заблокирована по решению администрации проекта]</a>

Если цифра после запятой меньше 5 - то округляем целое число в меньшую сторону, если цифра после запятой больше или равна 5, то целое число округляем в большую сторону. Пример: 1,4 округляем до 1. 1,6 округляем до 2."≈ " - знак приближенного равенства. Например 17,03 ≈ 17,029. Замена дробного числа ближайшим к нему целым числом называют округлением этого числа до целых. Числа можно округлять до любого разряда: до десятых, сотых, тысячных и т. д. Если число округляют до какого-нибудь разряда, то все следующие за этим разрядом числа заменяют нулями или отбрасывают, если они стоят после запятой. При этом, если первая замененная нулем или отброшенная цифра равна 5, 6, 7, 8 или 9, то стоящую перед ней цифру увеличивают на 1. Если эта цифра равна 0, 1, 2, 3 или 4, то стоящую перед ней цифру оставляют без изменений.

touch.otvet.mail.ru

как произвести округление с учетом значащих цифр?

Округление к ближайшему целому (англ. round) — наиболее часто используемое округление. Число в десятичной системе округляют до N-ого знака в зависимости от N+1 знака: если N+1 знак &lt; 5, то N-ый знак не меняется, а N+1 и все последующие обнуляют; если N+1 знак &#8805; 5, то N-ый знак увеличивается на единицу, а N+1 и все последующие обнуляют. Округление к меньшему по модулю (округление к нулю, англ. fix) — это самое «простое» компьютерное округление, заключающееся в «отбрасывании» «лишних» цифр. (11.9 становится равным 11, &#8722;0.9 становится равным 0, &#8722;1.1 становится равным &#8722;1). Иногда округление к нулю ещё называют англ. truncate, потому что для выполнения подобного округления достаточно при выводе числа обрезать поле вывода по нужному количеству знаков. Округление к большему (округление к +&#8734;, англ. ceil) — если у числа округляемые знаки не равны нулю, число округляется в большую сторону. В экономическом жаргоне — округление в пользу продавца, кредитора (лица, получающего деньги) . Округление к меньшему (округление к &#8722;&#8734;, англ. floor) — если у числа округляемые знаки не равны нулю, то число округляется в меньшую сторону (в случае положительных чисел округляемые знаки отбрасываются, в случае отрицательных чисел значение числа увеличивается по модулю) . В экономическом жаргоне — округление в пользу покупателя, дебитора (лица, отдающего деньги) . Округление к большему по модулю (округление к бесконечности, округление от нуля) относительно редко используемая форма округления, представляет из себя симметричную версию «округления к большему» . Банковское округление (англ. banker's rounding) — вариант округления к ближайшему целому, в котором изменено правило для случая N+1 знак = 5 - в этом случае округление происходит к ближайшему чётному. В этом случае исчезает систематическая ошибка округления при суммировании большого количества чисел. Случайное округление — если N+1 знак равен 5, то число округляется в меньшую или большую сторону в случайном порядке, но с равной вероятностью (может использоваться в статистике) . Чередующееся округление — каждый раз, когда N+1 знак равен 5, то число поочерёдно округляется в большую и меньшую сторону.

пока это читаешь, с ума сойдешь. объясню на примере. Есть число 31,4624 если надо округлить до целых, то смотрим что после запятой. Если 4&lt;5, то округляем в меньшую сторону, то есть в результате получаем 31. если надо округлить до одной цифры после запятой, то смотрим на вторую: 6&gt;5, тогда после округления получаем 32,5 ну и так далее да, точно не определено, как нужно округлять, если у тебя следующая цифра 5. Можно и в большую, и в меньшую сторону. Но чаще всего округляют в большую.

touch.otvet.mail.ru



О сайте

Онлайн-журнал "Автобайки" - первое на постсоветском пространстве издание, призванное осветить проблемы радовых автолюбителей с привлечение экспертов в области автомобилестроения, автоюристов, автомехаников. Вопросы и пожелания о работе сайта принимаются по адресу: Онлайн-журнал "Автобайки"